Deciding soccer scores and partial orientations of graphs.
An abstract convexity space on a connected hypergraph H with vertex set V (H) is a family C of subsets of V (H) (to be called the convex sets of H) such that: (i) C contains the empty set and V (H), (ii) C is closed under intersection, and (iii) every set in C is connected in H. A convex set X of H is a minimal vertex convex separator of H if there exist two vertices of H that are separated by X and are not separated by any convex set that is a proper subset of X. A nonempty subset X of V (H) is...
Using the general hypergraph technique developed in [7], we first give a much simpler proof of Shultz's theorem [10]: Each compact convex set is affinely homeomorphic to the state space of an orthomodular lattice. We also present partial solutions to open questions formulated in [10] - we show that not every compact convex set has to be a state space of a unital orthomodular lattice and that for unital orthomodular lattices the state space characterization can be obtained in the context of unital...
The dichromatic number dc(D) of a digraph D is the smallest number of colours needed to colour the vertices of D so that no monochromatic directed cycle is created. In this paper the problem of computing the dichromatic number of a Zykov-sum of digraphs over a digraph D is reduced to that of computing a multicovering number of an hypergraph H₁(D) associated to D in a natural way. This result allows us to construct an infinite family of pairwise non isomorphic vertex-critical k-dichromatic circulant...
In this paper we introduce the concept of directed hypergraph. It is a generalisation of the concept of digraph and is closely related with hypergraphs. The basic idea is to take a hypergraph, partition its edges non-trivially (when possible), and give a total order to such partitions. The elements of these partitions are called levels. In order to preserve the structure of the underlying hypergraph, we ask that only vertices which belong to exactly the same edges may be in the same level...
Les dissimilarités multivoies sont une généralisation naturelle des dissimilarités usuelles deux voies. Dans ce papier, des classes de dissimilarités multivoies sont étudiées, ainsi que des modèles de passage d'un nombre de voies donné à un autre nombre de voies. Une application à la spécification de systèmes classifiants a conduit à une bijection entre une classe de dissimilarités multivoies et une famille de systèmes stratifiés de classifccation.