The chromatic index of cyclic Steiner 2-designs.
In a graph, by definition, the weight of a (proper) coloring with positive integers is the sum of the colors. The chromatic sum is the minimum weight, taken over all the proper colorings. The minimum number of colors in a coloring of minimum weight is the cost chromatic number or strength of the graph. We derive general upper bounds for the strength, in terms of a new parameter of representations by edge intersections of hypergraphs.
A k-uniform hypergraph H = (V ;E) is called self-complementary if there is a permutation σ : V → V , called a complementing permutation, such that for every k-subset e of V , e ∈ E if and only if σ(e) ∉ E. In other words, H is isomorphic with H′ = (V ; V(k) − E). In this paper we define a bi-regular hypergraph and prove that there exists a bi-regular self-complementary 3-uniform hypergraph on n vertices if and only if n is congruent to 0 or 2 modulo 4. We also prove that there exists a quasi regular...
The end compactification |Γ| of a locally finite graph Γis the union of the graph and its ends, endowed with a suitable topology. We show that π₁(|Γ|) embeds into a nonstandard free group with hyperfinitely many generators, i.e. an ultraproduct of finitely generated free groups, and that the embedding we construct factors through an embedding into an inverse limit of free groups. We also show how to recover the standard description of π₁(|Γ|) given by Diestel and Sprüssel (2011). Finally, we give...
The path-distance-width of a connected graph G is the minimum integer w satisfying that there is a nonempty subset of S ⊆ V (G) such that the number of the vertices with distance i from S is at most w for any nonnegative integer i. In this note, we determine the path-distance-width of hypercubes.
This paper deals with weighted set systems (V,,q), where V is a set of indices, and the weight q is a nonnegative integer function on . The basic idea of the paper is to apply weighted set systems to formulate restrictions on intersections. It is of interest to know whether a weighted set system can be represented by set intersections. An intersection representation of (V,,q) is defined to be an indexed family of subsets of a set S such that for each E ∈ . A necessary condition for the existence...
A 3-uniform hypergraph is called a minimum 3-tree, if for any 3-coloring of its vertex set there is a heterochromatic triple and the hypergraph has the minimum possible number of triples. There is a conjecture that the number of triples in such 3-tree is ⎡(n(n-2))/3⎤ for any number of vertices n. Here we give a proof of this conjecture for any n ≡ 0,1 mod 12.
The aim of this paper is to characterize pairs (L, A), where L is a finite lattice and A a finite algebra, such that the subalgebra lattice of A is isomorphic to L. Next, necessary and sufficient conditions are found for pairs of finite algebras (of possibly distinct types) to have isomorphic subalgebra lattices. Both of these characterizations are particularly simple in the case of distributive subalgebra lattices. We do not restrict our attention to total algebras only, but we consider the more...
A d-uniform hypergraph is a sum hypergraph iff there is a finite S ⊆ IN⁺ such that is isomorphic to the hypergraph , where V = S and . For an arbitrary d-uniform hypergraph the sum number σ = σ() is defined to be the minimum number of isolated vertices such that is a sum hypergraph. In this paper, we prove , where denotes the d-partite complete hypergraph; this generalizes the corresponding result of Hartsfield and Smyth [8] for complete bipartite graphs.