Page 1

Displaying 1 – 6 of 6

Showing per page

Marginalization in models generated by compositional expressions

Francesco M. Malvestuto (2015)

Kybernetika

In the framework of models generated by compositional expressions, we solve two topical marginalization problems (namely, the single-marginal problem and the marginal-representation problem) that were solved only for the special class of the so-called “canonical expressions”. We also show that the two problems can be solved “from scratch” with preliminary symbolic computation.

Maximal hypergraphs with respect to the bounded cost hereditary property

Ewa Drgas-Burchardt, Anna Fiedorowicz (2005)

Discussiones Mathematicae Graph Theory

The hereditary property of hypergraphs generated by the cost colouring notion is considered in the paper. First, we characterize all maximal graphs with respect to this property. Second, we give the generating function for the sequence describing the number of such graphs with the numbered order. Finally, we construct a maximal hypergraph for each admissible number of vertices showing some density property. All results can be applied to the problem of information storage.

Maximizing Spectral Radii of Uniform Hypergraphs with Few Edges

Yi-Zheng Fan, Ying-Ying Tan, Xi-Xi Peng, An-Hong Liu (2016)

Discussiones Mathematicae Graph Theory

In this paper we investigate the hypergraphs whose spectral radii attain the maximum among all uniform hypergraphs with given number of edges. In particular we characterize the hypergraph(s) with maximum spectral radius over all unicyclic hypergraphs, linear or power unicyclic hypergraphs with given girth, linear or power bicyclic hypergraphs, respectively.

Maximum Hypergraphs without Regular Subgraphs

Jaehoon Kim, Alexandr V. Kostochka (2014)

Discussiones Mathematicae Graph Theory

We show that an n-vertex hypergraph with no r-regular subgraphs has at most 2n−1+r−2 edges. We conjecture that if n > r, then every n-vertex hypergraph with no r-regular subgraphs having the maximum number of edges contains a full star, that is, 2n−1 distinct edges containing a given vertex. We prove this conjecture for n ≥ 425. The condition that n > r cannot be weakened.

Currently displaying 1 – 6 of 6

Page 1