Edge-domatic numbers of cacti
The edge-domatic number of a graph is the maximum number of classes of a partition of its edge set into dominating sets. This number is studied for cacti, i.e. graphs in which each edge belongs to at most one circuit.
The edge-domatic number of a graph is the maximum number of classes of a partition of its edge set into dominating sets. This number is studied for cacti, i.e. graphs in which each edge belongs to at most one circuit.
Let be the family of all 2-connected plane triangulations with vertices of degree three or six. Grünbaum and Motzkin proved (in dual terms) that every graph P ∈ has a decomposition into factors P₀, P₁, P₂ (indexed by elements of the cyclic group Q = 0,1,2) such that every factor consists of two induced paths of the same length M(q), and K(q) - 1 induced cycles of the same length 2M(q). For q ∈ Q, we define an integer S⁺(q) such that the vector (K(q),M(q),S⁺(q)) determines the graph P (if P is...
Let a and b be integers 4 ≤ a ≤ b. We give simple, sufficient conditions for graphs to contain an even [a,b]-factor. The conditions are on the order and on the minimum degree, or on the edge-connectivity of the graph.
An even factor of a graph is a spanning subgraph in which each vertex has a positive even degree. Let be a bridgeless simple graph with minimum degree at least . Jackson and Yoshimoto (2007) showed that has an even factor containing two arbitrary prescribed edges. They also proved that has an even factor in which each component has order at least four. Moreover, Xiong, Lu and Han (2009) showed that for each pair of edges and of , there is an even factor containing and in which each...
We give a necessary and sufficient condition for the existence of perfect matchings in a plane bipartite graph in terms of elementary edge-cut, which extends the result for the existence of perfect matchings in a hexagonal system given in the paper of F. Zhang, R. Chen and X. Guo (1985).
Given integers p > k > 0, we consider the following problem of extremal graph theory: How many edges can a bipartite graph of order 2p have, if it contains a unique k-factor? We show that a labeling of the vertices in each part exists, such that at each vertex the indices of its neighbours in the factor are either all greater or all smaller than those of its neighbours in the graph without the factor. This enables us to prove that every bipartite graph with a unique k-factor and maximal size...
Gutman and Wagner proposed the concept of the matching energy which is defined as the sum of the absolute values of the zeros of the matching polynomial of a graph. And they pointed out that the chemical applications of matching energy go back to the 1970s. Let T be a tree with n vertices. In this paper, we characterize the trees whose complements have the maximal, second-maximal and minimal matching energy. Furthermore, we determine the trees with edge-independence number p whose complements have...
The distance spectral radius ρ(G) of a graph G is the largest eigenvalue of the distance matrix D(G). Let U (n,m) be the class of unicyclic graphs of order n with given matching number m (m ≠ 3). In this paper, we determine the extremal unicyclic graph which has minimal distance spectral radius in U (n,m) Cn.
En dos artículos, publicados en 1989, Balas y Ng dan una metodología para construir facetas del politopo de recubrimiento con coeficientes en {0, 1, 2}. Siguiendo esta metodología, en el presente artículo decimos cómo se contruyen facetas de dicho politopo con coeficientes en {0, 1, 2, 3}.
The class of DCT-graphs is a common generalization of the classes of almost claw-free and quasi claw-free graphs. We prove that every even (2p+1)-connected DCT-graph G is p-extendable, i.e., every set of p independent edges of G is contained in a perfect matching of G. This result is obtained as a corollary of a stronger result concerning factor-criticality of DCT-graphs.
By a result of McKenzie [4] finite directed graphs that satisfy certain connectivity and thinness conditions have the unique prime factorization property with respect to the cardinal product. We show that this property still holds under weaker connectivity and stronger thinness conditions. Furthermore, for such graphs the factorization can be determined in polynomial time.
A property of graphs is any isomorphism closed class of simple graphs. For given properties of graphs ₁,₂,...,ₙ a vertex (₁, ₂, ...,ₙ)-partition of a graph G is a partition V₁,V₂,...,Vₙ of V(G) such that for each i = 1,2,...,n the induced subgraph has property . The class of all graphs having a vertex (₁, ₂, ...,ₙ)-partition is denoted by ₁∘₂∘...∘ₙ. A property is said to be reducible with respect to a lattice of properties of graphs if there are n ≥ 2 properties ₁,₂,...,ₙ ∈ such that = ₁∘₂∘...∘ₙ;...