Page 1

Displaying 1 – 4 of 4

Showing per page

Magic and supermagic dense bipartite graphs

Jaroslav Ivanco (2007)

Discussiones Mathematicae Graph Theory

A graph is called magic (supermagic) if it admits a labelling of the edges by pairwise different (and consecutive) positive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In the paper we prove that any balanced bipartite graph with minimum degree greater than |V(G)|/4 ≥ 2 is magic. A similar result is presented for supermagic regular bipartite graphs.

Magic powers of graphs

Marián Trenkler, Vladimír Vetchý (1997)

Mathematica Bohemica

Necessary and sufficient conditions for a graph G that its power G i , i 2 , is a magic graph and one consequence are given.

Minimal rankings of the Cartesian product Kₙ ☐ Kₘ

Gilbert Eyabi, Jobby Jacob, Renu C. Laskar, Darren A. Narayan, Dan Pillone (2012)

Discussiones Mathematicae Graph Theory

For a graph G = (V, E), a function f:V(G) → 1,2, ...,k is a k-ranking if f(u) = f(v) implies that every u - v path contains a vertex w such that f(w) > f(u). A k-ranking is minimal if decreasing any label violates the definition of ranking. The arank number, ψ r ( G ) , of G is the maximum value of k such that G has a minimal k-ranking. We completely determine the arank number of the Cartesian product Kₙ ☐ Kₙ, and we investigate the arank number of Kₙ ☐ Kₘ where n > m.

Currently displaying 1 – 4 of 4

Page 1