Page 1

Displaying 1 – 8 of 8

Showing per page

Decomposition of Certain Complete Bipartite Graphs into Prisms

Dalibor Froncek (2017)

Discussiones Mathematicae Graph Theory

Häggkvist [6] proved that every 3-regular bipartite graph of order 2n with no component isomorphic to the Heawood graph decomposes the complete bipartite graph K6n,6n. In [1] Cichacz and Froncek established a necessary and sufficient condition for the existence of a factorization of the complete bipartite graph Kn,n into generalized prisms of order 2n. In [2] and [3] Cichacz, Froncek, and Kovar showed decompositions of K3n/2,3n/2 into generalized prisms of order 2n. In this paper we prove that K6n/5,6n/5...

Decomposition of complete graphs into ( 0 , 2 ) -prisms

Sylwia Cichacz, Soleh Dib, Dalibor Fronček (2014)

Czechoslovak Mathematical Journal

R. Frucht and J. Gallian (1988) proved that bipartite prisms of order 2 n have an α -labeling, thus they decompose the complete graph K 6 n x + 1 for any positive integer x . We use a technique called the ρ + -labeling introduced by S. I. El-Zanati, C. Vanden Eynden, and N. Punnim (2001) to show that also some other families of 3-regular bipartite graphs of order 2 n called generalized prisms decompose the complete graph K 6 n x + 1 for any positive integer x .

Difference labelling of cacti

Martin Sonntag (2003)

Discussiones Mathematicae Graph Theory

A graph G is a difference graph iff there exists S ⊂ IN⁺ such that G is isomorphic to the graph DG(S) = (V,E), where V = S and E = i,j:i,j ∈ V ∧ |i-j| ∈ V. It is known that trees, cycles, complete graphs, the complete bipartite graphs K n , n and K n , n - 1 , pyramids and n-sided prisms (n ≥ 4) are difference graphs (cf. [4]). Giving a special labelling algorithm, we prove that cacti with a girth of at least 6 are difference graphs, too.

Difference labelling of digraphs

Martin Sonntag (2004)

Discussiones Mathematicae Graph Theory

A digraph G is a difference digraph iff there exists an S ⊂ N⁺ such that G is isomorphic to the digraph DD(S) = (V,A), where V = S and A = {(i,j):i,j ∈ V ∧ i-j ∈ V}.For some classes of digraphs, e.g. alternating trees, oriented cycles, tournaments etc., it is known, under which conditions these digraphs are difference digraphs (cf. [5]). We generalize the so-called source-join (a construction principle to obtain a new difference digraph from two given ones (cf. [5])) and construct a difference labelling...

Distance Magic Cartesian Products of Graphs

Sylwia Cichacz, Dalibor Froncek, Elliot Krop, Christopher Raridan (2016)

Discussiones Mathematicae Graph Theory

A distance magic labeling of a graph G = (V,E) with |V | = n is a bijection ℓ : V → {1, . . . , n} such that the weight of every vertex v, computed as the sum of the labels on the vertices in the open neighborhood of v, is a constant. In this paper, we show that hypercubes with dimension divisible by four are not distance magic. We also provide some positive results by proving necessary and sufficient conditions for the Cartesian product of certain complete multipartite graphs and the cycle on four...

Currently displaying 1 – 8 of 8

Page 1