Displaying 241 – 260 of 5365

Showing per page

A note on domination in bipartite graphs

Tobias Gerlach, Jochen Harant (2002)

Discussiones Mathematicae Graph Theory

DOMINATING SET remains NP-complete even when instances are restricted to bipartite graphs, however, in this case VERTEX COVER is solvable in polynomial time. Consequences to VECTOR DOMINATING SET as a generalization of both are discussed.

A note on domination parameters in random graphs

Anthony Bonato, Changping Wang (2008)

Discussiones Mathematicae Graph Theory

Domination parameters in random graphs G(n,p), where p is a fixed real number in (0,1), are investigated. We show that with probability tending to 1 as n → ∞, the total and independent domination numbers concentrate on the domination number of G(n,p).

A note on domination parameters of the conjunction of two special graphs

Maciej Zwierzchowski (2001)

Discussiones Mathematicae Graph Theory

A dominating set D of G is called a split dominating set of G if the subgraph induced by the subset V(G)-D is disconnected. The cardinality of a minimum split dominating set is called the minimum split domination number of G. Such subset and such number was introduced in [4]. In [2], [3] the authors estimated the domination number of products of graphs. More precisely, they were study products of paths. Inspired by those results we give another estimation of the domination number of the conjunction...

A note on face coloring entire weightings of plane graphs

Stanislav Jendrol, Peter Šugerek (2014)

Discussiones Mathematicae Graph Theory

Given a weighting of all elements of a 2-connected plane graph G = (V,E, F), let f(α) denote the sum of the weights of the edges and vertices incident with the face _ and also the weight of _. Such an entire weighting is a proper face colouring provided that f(α) ≠ f(β) for every two faces α and _ sharing an edge. We show that for every 2-connected plane graph there is a proper face-colouring entire weighting with weights 1 through 4. For some families we improved 4 to 3

A note on graph coloring

D. De Werra (1974)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

A note on intersection dimensions of graph classes

Petr Hliněný, Aleš Kuběna (1995)

Commentationes Mathematicae Universitatis Carolinae

The intersection dimension of a graph G with respect to a class 𝒜 of graphs is the minimum k such that G is the intersection of some k graphs on the vertex set V ( G ) belonging to 𝒜 . In this paper we follow [ Kratochv’ıl J., Tuza Z.: Intersection dimensions of graph classes, Graphs and Combinatorics 10 (1994), 159–168 ] and show that for some pairs of graph classes 𝒜 , the intersection dimension of graphs from with respect to 𝒜 is unbounded.

A note on joins of additive hereditary graph properties

Ewa Drgas-Burchardt (2006)

Discussiones Mathematicae Graph Theory

Let L a denote a set of additive hereditary graph properties. It is a known fact that a partially ordered set ( L a , ) is a complete distributive lattice. We present results when a join of two additive hereditary graph properties in ( L a , ) has a finite or infinite family of minimal forbidden subgraphs.

Currently displaying 241 – 260 of 5365