Page 1 Next

Displaying 1 – 20 of 120

Showing per page

Identifiability, stability and reconstruction results of point sources by boundary measurements in heteregeneous trees.

Serge Nicaise, Ouahiba Zaïr (2003)

Revista Matemática Complutense

We consider the inverse problem of determining point wave sources in heteregeneous trees, extensions of one-dimensional stratified sets. We show that the Neumann boundary observation on a part of the lateral boundary determines uniquely the point sources if the time of observation is large enough. We further establish a conditional stability and give a reconstructing scheme.

Implementation of directed acyclic word graph

Miroslav Balík (2002)

Kybernetika

An effective implementation of a Directed Acyclic Word Graph (DAWG) automaton is shown. A DAWG for a text T is a minimal automaton that accepts all substrings of a text T , so it represents a complete index of the text. While all usual implementations of DAWG needed about 30 times larger storage space than was the size of the text, here we show an implementation that decreases this requirement down to four times the size of the text. The method uses a compression of DAWG elements, i. e. vertices,...

Improved Sufficient Conditions for Hamiltonian Properties

Jens-P. Bode, Anika Fricke, Arnfried Kemnitz (2015)

Discussiones Mathematicae Graph Theory

In 1980 Bondy [2] proved that a (k+s)-connected graph of order n ≥ 3 is traceable (s = −1) or Hamiltonian (s = 0) or Hamiltonian-connected (s = 1) if the degree sum of every set of k+1 pairwise nonadjacent vertices is at least ((k+1)(n+s−1)+1)/2. It is shown in [1] that one can allow exceptional (k+ 1)-sets violating this condition and still implying the considered Hamiltonian property. In this note we generalize this result for s = −1 and s = 0 and graphs that fulfill a certain connectivity condition....

Improved upper bounds for nearly antipodal chromatic number of paths

Yu-Fa Shen, Guo-Ping Zheng, Wen-Jie HeK (2007)

Discussiones Mathematicae Graph Theory

For paths Pₙ, G. Chartrand, L. Nebeský and P. Zhang showed that a c ' ( P ) n - 2 2 + 2 for every positive integer n, where ac’(Pₙ) denotes the nearly antipodal chromatic number of Pₙ. In this paper we show that a c ' ( P ) n - 2 2 - n / 2 - 10 / n + 7 if n is even positive integer and n ≥ 10, and a c ' ( P ) n - 2 2 - ( n - 1 ) / 2 - 13 / n + 8 if n is odd positive integer and n ≥ 13. For all even positive integers n ≥ 10 and all odd positive integers n ≥ 13, these results improve the upper bounds for nearly antipodal chromatic number of Pₙ.

Improving some bounds for dominating Cartesian products

Bert L. Hartnell, Douglas F. Rall (2003)

Discussiones Mathematicae Graph Theory

The study of domination in Cartesian products has received its main motivation from attempts to settle a conjecture made by V.G. Vizing in 1968. He conjectured that γ(G)γ(H) is a lower bound for the domination number of the Cartesian product of any two graphs G and H. Most of the progress on settling this conjecture has been limited to verifying the conjectured lower bound if one of the graphs has a certain structural property. In addition, a number of authors have established bounds for dominating...

Currently displaying 1 – 20 of 120

Page 1 Next