Previous Page 20

Displaying 381 – 390 of 390

Showing per page

Cyclic decompositions of complete graphs into spanning trees

Dalibor Froncek (2004)

Discussiones Mathematicae Graph Theory

We examine decompositions of complete graphs with an even number of vertices, K 2 n , into n isomorphic spanning trees. While methods of such decompositions into symmetric trees have been known, we develop here a more general method based on a new type of vertex labelling, called flexible q-labelling. This labelling is a generalization of labellings introduced by Rosa and Eldergill.

Cyclically 5-edge connected non-bicritical critical snarks

Stefan Grünewald, Eckhard Steffen (1999)

Discussiones Mathematicae Graph Theory

Snarks are bridgeless cubic graphs with chromatic index χ' = 4. A snark G is called critical if χ'(G-{v,w}) = 3, for any two adjacent vertices v and w. For any k ≥ 2 we construct cyclically 5-edge connected critical snarks G having an independent set I of at least k vertices such that χ'(G-I) = 4. For k = 2 this solves a problem of Nedela and Skoviera [6].

Cyclically k-partite digraphs and k-kernels

Hortensia Galeana-Sánchez, César Hernández-Cruz (2011)

Discussiones Mathematicae Graph Theory

Let D be a digraph, V(D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k,l)-kernel N of D is a k-independent set of vertices (if u,v ∈ N then d(u,v) ≥ k) and l-absorbent (if u ∈ V(D)-N then there exists v ∈ N such that d(u,v) ≤ l). A k-kernel is a (k,k-1)-kernel. A digraph D is cyclically k-partite if there exists a partition V i i = 0 k - 1 of V(D) such that every arc in D is a V i V i + 1 - a r c (mod k). We give a characterization for an unilateral digraph to be cyclically k-partite through the lengths...

Currently displaying 381 – 390 of 390

Previous Page 20