Displaying 541 – 560 of 5365

Showing per page

Algorithms for recognizing bipartite-Helly and bipartite-conformal hypergraphs*, **

Marina Groshaus, Jayme Luis Szwarcfiter (2011)

RAIRO - Operations Research

A hypergraph is Helly if every family of hyperedges of it, formed by pairwise intersecting hyperedges, has a common vertex. We consider the concepts of bipartite-conformal and (colored) bipartite-Helly hypergraphs. In the same way as conformal hypergraphs and Helly hypergraphs are dual concepts, bipartite-conformal and bipartite-Helly hypergraphs are also dual. They are useful for characterizing biclique matrices and biclique graphs, that is, the...

Algorithms for recognizing bipartite-Helly and bipartite-conformal hypergraphs*, **

Marina Groshaus, Jayme Luis Szwarcfiter (2011)

RAIRO - Operations Research

A hypergraph is Helly if every family of hyperedges of it, formed by pairwise intersecting hyperedges, has a common vertex. We consider the concepts of bipartite-conformal and (colored) bipartite-Helly hypergraphs. In the same way as conformal hypergraphs and Helly hypergraphs are dual concepts, bipartite-conformal and bipartite-Helly hypergraphs are also dual. They are useful for characterizing biclique matrices and biclique graphs, that is, the...

Algorithms for the two dimensional bin packing problem with partial conflicts

Khaoula Hamdi-Dhaoui, Nacima Labadie, Alice Yalaoui (2012)

RAIRO - Operations Research

The two-dimensional bin packing problem is a well-known problem for which several exact and approximation methods were proposed. In real life applications, such as in Hazardous Material transportation, transported items may be partially incompatible, and have to be separated by a safety distance. This complication has not yet been considered in the literature. This paper introduces this extension called the two-dimensional bin packing problem with partial conflicts (2BPPC) which is a 2BP with distance...

Algorithms for the two dimensional bin packing problem with partial conflicts

Khaoula Hamdi-Dhaoui, Nacima Labadie, Alice Yalaoui (2012)

RAIRO - Operations Research

The two-dimensional bin packing problem is a well-known problem for which several exact and approximation methods were proposed. In real life applications, such as in Hazardous Material transportation, transported items may be partially incompatible, and have to be separated by a safety distance. This complication has not yet been considered in the literature. This paper introduces this extension called the two-dimensional bin packing problem with partial conflicts (2BPPC) which is a 2BP with distance...

Algunos grafos compuestos.

Miguel Angel Fiol Mora, Josep Fàbrega Canudas (1983)

Stochastica

From two graphs G1 and G2 on N1 and N2 vertices respectively, the compound graph G1[G2] on N1N2 vertices is obtained by connecting in some way N2 copies of G1.We present in this paper methods of compounding that result in families of graphs with large number of vertices for given values of the maximum degree ∆ and diameter D.

All Tight Descriptions of 3-Stars in 3-Polytopes with Girth 5

Oleg V. Borodin, Anna O. Ivanova (2017)

Discussiones Mathematicae Graph Theory

Lebesgue (1940) proved that every 3-polytope P5 of girth 5 has a path of three vertices of degree 3. Madaras (2004) refined this by showing that every P5 has a 3-vertex with two 3-neighbors and the third neighbor of degree at most 4. This description of 3-stars in P5s is tight in the sense that no its parameter can be strengthened due to the dodecahedron combined with the existence of a P5 in which every 3-vertex has a 4-neighbor. We give another tight description of 3-stars in P5s: there is a vertex...

Almost Abelian regular dessins d'enfants

Ruben A. Hidalgo (2013)

Fundamenta Mathematicae

A regular dessin d'enfant, in this paper, will be a pair (S,β), where S is a closed Riemann surface and β: S → ℂ̂ is a regular branched cover whose branch values are contained in the set {∞,0,1}. Let Aut(S,β) be the group of automorphisms of (S,β), that is, the deck group of β. If Aut(S,β) is Abelian, then it is known that (S,β) can be defined over ℚ. We prove that, if A is an Abelian group and Aut(S,β) ≅ A ⋊ ℤ₂, then (S,β) is also definable over ℚ. Moreover, if A ≅ ℤₙ, then we provide explicitly...

Almost Self-Complementary 3-Uniform Hypergraphs

Lata N. Kamble, Charusheela M. Deshpande, Bhagyashree Y. Bam (2017)

Discussiones Mathematicae Graph Theory

It is known that self-complementary 3-uniform hypergraphs on n vertices exist if and only if n is congruent to 0, 1 or 2 modulo 4. In this paper we define an almost self-complementary 3-uniform hypergraph on n vertices and prove that it exists if and only if n is congruent to 3 modulo 4. The structure of corresponding complementing permutation is also analyzed. Further, we prove that there does not exist a regular almost self-complementary 3-uniform hypergraph on n vertices where n is congruent...

Almost-Rainbow Edge-Colorings of Some Small Subgraphs

Elliot Krop, Irina Krop (2013)

Discussiones Mathematicae Graph Theory

Let f(n, p, q) be the minimum number of colors necessary to color the edges of Kn so that every Kp is at least q-colored. We improve current bounds on these nearly “anti-Ramsey” numbers, first studied by Erdös and Gyárfás. We show that [...] , slightly improving the bound of Axenovich. We make small improvements on bounds of Erdös and Gyárfás by showing [...] and for all even n ≢ 1(mod 3), f(n, 4, 5) ≤ n− 1. For a complete bipartite graph G= Kn,n, we show an n-color construction to color the edges...

Currently displaying 541 – 560 of 5365