Previous Page 6

Displaying 101 – 110 of 110

Showing per page

Branching random walks on binary search trees: convergence of the occupation measure

Eric Fekete (2010)

ESAIM: Probability and Statistics

We consider branching random walks with binary search trees as underlying trees. We show that the occupation measure of the branching random walk, up to some scaling factors, converges weakly to a deterministic measure. The limit depends on the stable law whose domain of attraction contains the law of the increments. The existence of such stable law is our fundamental hypothesis. As a consequence, using a one-to-one correspondence between binary trees and plane trees, we give a description of the...

Broken Circuits in Matroids-Dohmen’s Inductive Proof

Wojciech Kordecki, Anna Łyczkowska-Hanćkowiak (2013)

Discussiones Mathematicae Graph Theory

Dohmen [4] gives a simple inductive proof of Whitney’s famous broken circuits theorem. We generalise his inductive proof to the case of matroids

Currently displaying 101 – 110 of 110

Previous Page 6