Distinguishing infinite graphs.
We introduce a new hereditary class of graphs, the dominant-matching graphs, and we characterize it in terms of forbidden induced subgraphs.
In this paper, we continue the study of domination and total domination in cubic graphs. It is known [Henning M.A., Southey J., A note on graphs with disjoint dominating and total dominating sets, Ars Combin., 2008, 89, 159–162] that every cubic graph has a dominating set and a total dominating set which are disjoint. In this paper we show that every connected cubic graph on nvertices has a total dominating set whose complement contains a dominating set such that the cardinality of the total dominating...
A graph G is hereditarily dominated by a class 𝓓 of connected graphs if each connected induced subgraph of G contains a dominating induced subgraph belonging to 𝓓. In this paper we characterize graphs hereditarily dominated by classes of complete bipartite graphs, stars, connected bipartite graphs, and complete k-partite graphs.
The -domination number of a graph for a given number set was introduced by D. W. Bange, A. E. Barkauskas, L. H. Host and P. J. Slater as a generalization of the domination number of a graph. It is defined using the concept of a -dominating function. In this paper the particular case where for a positive integer is studied.