Einige Bemerkungen über freie Kategorien und freie Gruppoide
This paper studies some diameter-related properties of the 3-step circulant digraphs with set of vertices V≡ZN and steps (± a,b). More precisely, it concentrates upon maximizing their order N for any fixed value of their diameter k. In the proposed geometrical approach, each digraph is fully represented by a T-shape tile which tessellates periodically the plane. The study of these tiles leads to the optimal solutions.
In this paper, we rule out the possibility that a certain method of proof in the sums differences conjecture can settle the Kakeya Conjecture.
We inductively describe an embedding of a complete ternary tree Tₕ of height h into a hypercube Q of dimension at most ⎡(1.6)h⎤+1 with load 1, dilation 2, node congestion 2 and edge congestion 2. This is an improvement over the known embedding of Tₕ into Q. And it is very close to a conjectured embedding of Havel [3] which states that there exists an embedding of Tₕ into its optimal hypercube with load 1 and dilation 2. The optimal hypercube has dimension ⎡(log₂3)h⎤ ( = ⎡(1.585)h⎤) or ⎡(log₂3)h⎤+1....