Experimental comparison of graph drawing algorithms for cubic graphs.
In this paper we analyze the computational complexity of a processor optimization problem. Given operations with interval times in a branching flow graph, the problem is to find an assignment of the operations to a minimum number of processors. We analyze the complexity of this assignment problem for flow graphs with a constant number of program traces and a constant number of processors.
We consider the primitive two-colored digraphs whose uncolored digraph has vertices and consists of one -cycle and one -cycle. We give bounds on the exponents and characterizations of extremal two-colored digraphs.
An extended tree of a graph is a certain analogue of spanning tree. It is defined by means of vertex splitting. The properties of these trees are studied, mainly for complete graphs.
The maximum independent set problem is an NP-hard problem. In this paper, we consider Algorithm MAX, which is a polynomial time algorithm for finding a maximal independent set in a graph G. We present a set of forbidden induced subgraphs such that Algorithm MAX always results in finding a maximum independent set of G. We also describe two modifications of Algorithm MAX and sets of forbidden induced subgraphs for the new algorithms.
Let G be a 2-connected graph of order n. Suppose that for all 3-independent sets X in G, there exists a vertex u in X such that |N(X∖u)|+d(u) ≥ n-1. Using the concept of dual closure, we prove that 1. G is hamiltonian if and only if its 0-dual closure is either complete or the cycle C₇ 2. G is nonhamiltonian if and only if its 0-dual closure is either the graph , 1 ≤ r ≤ s ≤ t or the graph . It follows that it takes a polynomial time to check the hamiltonicity or the nonhamiltonicity of a graph...
Given integers p > k > 0, we consider the following problem of extremal graph theory: How many edges can a bipartite graph of order 2p have, if it contains a unique k-factor? We show that a labeling of the vertices in each part exists, such that at each vertex the indices of its neighbours in the factor are either all greater or all smaller than those of its neighbours in the graph without the factor. This enables us to prove that every bipartite graph with a unique k-factor and maximal size...