Principal tolerances on lattices
A characterization of the cozero elements of a frame, without reference to the reals, is given and is used to obtain a characterization of pseudocompactness also independent of the reals. Applications are made to the congruence frame of a -frame and to Alexandroff spaces.
We lift the notion of quasicontinuous posets to the topology context, called quasicontinuous spaces, and further study such spaces. The main results are: (1) A space is a quasicontinuous space if and only if is locally hypercompact if and only if is a hypercontinuous lattice; (2) a space is an -continuous space if and only if is a meet continuous and quasicontinuous space; (3) if a -space is a well-filtered poset under its specialization order, then is a quasicontinuous space...
In this paper, we define some types of filters in lattice effect algebras, investigate some relations between them and introduce some new examples of lattice effect algebras. Then by using the strong filter, we find a CI-lattice congruence on lattice effect algebras, such that the induced quotient structure of it is a lattice effect algebra, too. Finally, under some suitable conditions, we get a quotient MV-effect algebra and a quotient orthomodular lattice, by this congruence relation.
We presents some relations between the (maximal) spectre of a residuated lattice and the residuated lattices of its regular elements. We note the characterization found for the radical of a residuated lattice via the radical of the residuated lattices of the ragular elements. Finally, this last result is applied in the study of the simplicity and semi-simplicity of a residuated lattice.
Algorithms for generating random posets, random lattices and random lattice terms are given.