Dualities for Stone algebras, double Stone algebras, and relative Stone algebras
We show that any finitely generated variety V of double Heyting algebras is finitely determined, meaning that for some finite cardinal n(V), any class ⊆ V consisting of algebras with pairwise isomorphic endomorphism monoids has fewer than n(V) pairwise non-isomorphic members. This result complements the earlier established fact of categorical universality of the variety of all double Heyting algebras, and contrasts with categorical results concerning finitely generated varieties of distributive...
We present an algebraic treatment of the correspondence of gaps and dualities in partial ordered classes induced by the morphism structures of certain categories which we call Heyting (such are for instance all cartesian closed categories, but there are other important examples). This allows to extend the results of [14] to a wide range of more general structures. Also, we introduce a notion of combined dualities and discuss the relation of their structure to that of the plain ones.
Bounded commutative residuated lattice ordered monoids (-monoids) are a common generalization of, e.g., -algebras and Heyting algebras. In the paper, the properties of local and perfect bounded commutative -monoids are investigated.
We investigate notions of -compactness for frames. We find that the analogues of equivalent conditions defining -compact spaces are no longer equivalent in the frame context. Indeed, the closed quotients of frame ‘-cubes’ are exactly 0-dimensional Lindelöf frames, whereas those frames which satisfy a property based on the ultrafilter condition for spatial -compactness form a much larger class, and better embody what ‘-compact frames’ should be. This latter property is expressible without reference...
In this note we are going to study dense covers in the category of locales. We shall show that any product of finitely regular locales with some dense covering property has this property as well.