A characterisation of lattice-ordered abelian groups.
A basic algebra is an algebra of the same type as an MV-algebra and it is in a one-to-one correspondence to a bounded lattice having antitone involutions on its principal filters. We present a simple criterion for checking whether a basic algebra is commutative or even an MV-algebra.
We study the multiplicative lattices which satisfy the condition for all . Call them sharp lattices. We prove that every totally ordered sharp lattice is isomorphic to the ideal lattice of a valuation domain with value group or . A sharp lattice localized at its maximal elements are totally ordered sharp lattices. The converse is true if has finite character.
We prove here an Eilenberg type theorem: the so-called conjunctive varieties of rational languages correspond to the pseudovarieties of finite semilattice-ordered monoids. Taking complements of members of a conjunctive variety of languages we get a so-called disjunctive variety. We present here a non-trivial example of such a variety together with an equational characterization of the corresponding pseudovariety.
We discuss the ultrasimplicial property of lattice-ordered abelian groups and their associated MV-algebras. We give a constructive proof of the fact that every lattice-ordered abelian group generated by three elements is ultrasimplicial.
Any given increasing function is completely determined by its contour lines. In this paper we show how each individual uninorm property can be translated into a property of contour lines. In particular, we describe commutativity in terms of orthosymmetry and we link associativity to the portation law and the exchange principle. Contrapositivity and rotation invariance are used to characterize uninorms that have a continuous contour line.
-algebras, introduced by P. Hájek, form an algebraic counterpart of the basic fuzzy logic. In the paper it is shown that -algebras are the duals of bounded representable -monoids. This duality enables us to describe some structure properties of -algebras.
Let be a field with a Krull valuation and value group , and let be the valuation ring. Theories about spaces of countable type and Hilbert-like spaces in [1] and spaces of continuous linear operators in [2] require that all absolutely convex subsets of the base field should be countably generated as -modules.By [1] Prop. 1.4.1, the field is metrizable if and only if the value group has a cofinal sequence. We prove that for any fixed cardinality , there exists a metrizable field ...
In this paper, we investigate Egoroff’s theorem with respect to monotone set function, and show that a necessary and sufficient condition that Egoroff’s theorem remain valid for monotone set function is that the monotone set function fulfill condition (E). Therefore Egoroff’s theorem for non-additive measure is formulated in full generality.