On the dual space of an MS-algebra.
We develop dynamical methods for studying left-orderable groups as well as the spaces of orderings associated to them. We give new and elementary proofs of theorems by Linnell (if a left-orderable group has infinitely many orderings, then it has uncountably many) and McCleary (the space of orderings of the free group is a Cantor set). We show that this last result also holds for countable torsion-free nilpotent groups which are not rank-one Abelian. Finally, we apply our methods to the case of braid...
It was shown in [7] that any right reversible, cancellative ordered semigroup can be embedded into an ordered group and as a consequence, it was shown that a commutative ordered semigroup can be embedded into an ordered group if and only if it is cancellative. In this paper we introduce the concept of -maher and -maher semigroups and use a technique similar to that used in [7] to show that any left reversible cancellative ordered or -maher semigroup can be embedded into an ordered group.
A lattice ordered group valued subadditive measure is extended from an algebra of subsets of a set to a -algebra.
The aim of this paper is to construct an -valued category whose objects are --ordered sets. To reach the goal, first, we construct a category whose objects are --ordered sets and morphisms are order-preserving mappings (in a fuzzy sense). For the morphisms of the category we define the degree to which each morphism is an order-preserving mapping and as a result we obtain an -valued category. Further we investigate the properties of this category, namely, we observe some special objects, special...
Let be a positive integer, and the set of all -circulant matrices over the Boolean algebra , . For any fixed -circulant matrix () in , we define an operation “” in as follows: for any in , where is the usual product of Boolean matrices. Then is a semigroup. We denote this semigroup by and call it the sandwich semigroup of generalized circulant...