Displaying 641 – 660 of 906

Showing per page

Convolution of second order linear recursive sequences II.

Tamás Szakács (2017)

Communications in Mathematics

We continue the investigation of convolutions of second order linear recursive sequences (see the first part in [1]). In this paper, we focus on the case when the characteristic polynomials of the sequences have common root.

Coppersmith-Rivlin type inequalities and the order of vanishing of polynomials at 1

(2016)

Acta Arithmetica

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≢ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p ) 1 / p , a j , such that ( x - 1 ) k divides P(x). For n ∈ ℕ, L > 0, and q ≥ 1 let μ q ( n , L ) be the smallest value of k for which there is a polynomial Q of degree k with complex coefficients such that | Q ( 0 ) | > 1 / L ( j = 1 n | Q ( j ) | q ) 1 / q . We find the size of κ p ( n , L ) and μ q ( n , L ) for all n ∈ ℕ, L > 0, and 1 ≤ p,q ≤ ∞. The result about μ ( n , L ) is due to Coppersmith and Rivlin, but our proof is completely different and much shorter even in that special...

Coprimality of integers in Piatetski-Shapiro sequences

Watcharapon Pimsert, Teerapat Srichan, Pinthira Tangsupphathawat (2023)

Czechoslovak Mathematical Journal

We use the estimation of the number of integers n such that n c belongs to an arithmetic progression to study the coprimality of integers in c = { n c } n , c > 1 , c .

Corestriction of central simple algebras and families of Mumford-type

Federica Galluzzi (1999)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let M be a family of Mumford-type, that is, a family of polarized complex abelian fourfolds as introduced by Mumford in [9]. This family is defined starting from a quaternion algebra A over a real cubic number field and imposing a condition to the corestriction of such A . In this paper, under some extra conditions on the algebra A , we make this condition explicit and in this way we are able to describe the polarization and the complex structures of the fibers. Then, we look at the non simple C M -fibers...

Corps de définition et points rationnels

Geoffroy Derome (2003)

Journal de théorie des nombres de Bordeaux

Soit 𝔒 un objet algébrique (par exemple une courbe ou un revêtement) défini sur ¯ et de corps des modules un corps de nombres K . Il est bien connu que 𝔒 n’admet pas nécessairement de K -modèle. En utilisant deux résultats récents dus à P. Dèbes, J.-C. Douai et M. Emsalem nous donnerons un majorant pour le degré d’un corps de définition de 𝔒 sur K . Dans une deuxième partie, nous donnerons des conditions suffisantes sur l’ordre de Aut( 𝔒 ) pour que 𝔒 admette un K -modèle.

Currently displaying 641 – 660 of 906