The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 881 –
900 of
3028
We consider some applications of the singular integral equation of the second kind of Fox. Some new solutions to Fox’s integral equation are discussed in relation to number theory.
The phenomenon of anomaly small error terms in the lattice point problem is considered in detail in two dimensions. For irrational polygons the errors are expressed in terms of diophantine properties of the side slopes. As a result, for the -dilatation, , of certain classes of irrational polygons the error terms are bounded as with some , or as with arbitrarily small .
W. Sierpiński asked in 1959 (see [4], pp. 200-201, cf. [2]) whether there exist infinitely many positive integers not of the form n - φ(n), where φ is the Euler function. We answer this question in the affirmative by proving Theorem. None of the numbers (k = 1, 2,...) is of the form n - φ(n).
In this note, we study those positive integers which are divisible by , where is the Carmichael function.
Let be a totally real algebraic number field whose ring of integers is a principal ideal domain. Let be a totally definite ternary quadratic form with coefficients in . We shall study representations of totally positive elements by . We prove a quantitative formula relating the number of representations of by different classes in the genus of to the class number of , where is a constant depending only on . We give an algebraic proof of a classical result of H. Maass on representations...
We study integral similitude 3 × 3-matrices and those positive integers which occur as products of their row elements, when matrices are symmetric with the same numbers in each row. It turns out that integers for which nontrivial matrices of this type exist define elliptic curves of nonzero rank and are closely related to generalized cubic Fermat equations.
Currently displaying 881 –
900 of
3028