Displaying 81 – 100 of 136

Showing per page

On the composition of the Euler function and the sum of divisors function

Jean-Marie De Koninck, Florian Luca (2007)

Colloquium Mathematicae

Let H(n) = σ(ϕ(n))/ϕ(σ(n)), where ϕ(n) is Euler's function and σ(n) stands for the sum of the positive divisors of n. We obtain the maximal and minimal orders of H(n) as well as its average order, and we also prove two density theorems. In particular, we answer a question raised by Golomb.

On the counting function for the generalized Niven numbers

Ryan Daileda, Jessica Jou, Robert Lemke-Oliver, Elizabeth Rossolimo, Enrique Treviño (2009)

Journal de Théorie des Nombres de Bordeaux

Given an integer base q 2 and a completely q -additive arithmetic function f taking integer values, we deduce an asymptotic expression for the counting function N f ( x ) = # 0 n < x | f ( n ) n under a mild restriction on the values of f . When f = s q , the base q sum of digits function, the integers counted by N f are the so-called base q Niven numbers, and our result provides a generalization of the asymptotic known in that case.

On the divisibility of power LCM matrices by power GCD matrices

Jian Rong Zhao, Shaofang Hong, Qunying Liao, Kar-Ping Shum (2007)

Czechoslovak Mathematical Journal

Let S = { x 1 , , x n } be a set of n distinct positive integers and e 1 an integer. Denote the n × n power GCD (resp. power LCM) matrix on S having the e -th power of the greatest common divisor ( x i , x j ) (resp. the e -th power of the least common multiple [ x i , x j ] ) as the ( i , j ) -entry of the matrix by ( ( x i , x j ) e ) (resp. ( [ x i , x j ] e ) ) . We call the set S an odd gcd closed (resp. odd lcm closed) set if every element in S is an odd number and ( x i , x j ) S (resp. [ x i , x j ] S ) for all 1 i , j n . In studying the divisibility of the power LCM and power GCD matrices, Hong conjectured in 2004 that...

On the equation ϕ ( | x m - y m | ) = 2 n

Florian Luca (2000)

Mathematica Bohemica

In this paper we investigate the solutions of the equation in the title, where φ is the Euler function. We first show that it suffices to find the solutions of the above equation when m = 4 and x and y are coprime positive integers. For this last equation, we show that aside from a few small solutions, all the others are in a one-to-one correspondence with the Fermat primes.

On the Euler function of repdigits

Florian Luca (2008)

Czechoslovak Mathematical Journal

For a positive integer n we write φ ( n ) for the Euler function of n . In this note, we show that if b > 1 is a fixed positive integer, then the equation φ x b n - 1 b - 1 = y b m - 1 b - 1 , where x , y { 1 , ... , b - 1 } , has only finitely many positive integer solutions ( x , y , m , n ) .

Currently displaying 81 – 100 of 136