Displaying 21 – 40 of 228

Showing per page

Automatic continued fractions are transcendental or quadratic

Yann Bugeaud (2013)

Annales scientifiques de l'École Normale Supérieure

We establish new combinatorial transcendence criteria for continued fraction expansions. Let  α = [ 0 ; a 1 , a 2 , ... ] be an algebraic number of degree at least three. One of our criteria implies that the sequence of partial quotients ( a ) 1 of  α is not ‘too simple’ (in a suitable sense) and cannot be generated by a finite automaton.

Charles Hermite’s stroll through the Galois fields

Catherine Goldstein (2011)

Revue d'histoire des mathématiques

Although everything seems to oppose the two mathematicians, Charles Hermite’s role was crucial in the study and diffusion of Évariste Galois’s results in France during the second half of the nineteenth century. The present article examines that part of Hermite’s work explicitly linked to Galois, the reduction of modular equations in particular. It shows how Hermite’s mathematical convictions—concerning effectiveness or the unity of algebra, analysis and arithmetic—shaped his interpretation of Galois...

Class Number Two for Real Quadratic Fields of Richaud-Degert Type

Mollin, R. A. (2009)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary: 11D09, 11A55, 11C08, 11R11, 11R29; Secondary: 11R65, 11S40; 11R09.This paper contains proofs of conjectures made in [16] on class number 2 and what this author has dubbed the Euler-Rabinowitsch polynomial for real quadratic fields. As well, we complete the list of Richaud-Degert types given in [16] and show how the behaviour of the Euler-Rabinowitsch polynomials and certain continued fraction expansions come into play in the complete determination...

Comportement local moyen de la fonction de Brjuno

Michel Balazard, Bruno Martin (2012)

Fundamenta Mathematicae

We describe the average behaviour of the Brjuno function Φ in the neighbourhood of any given point of the unit interval. In particular, we show that the Lebesgue set of Φ is the set of Brjuno numbers and we find the asymptotic behaviour of the modulus of continuity of the integral of Φ.

Construction de fractions continues périodiques uniformément bornées

Paul Mercat (2013)

Journal de Théorie des Nombres de Bordeaux

Nous construisons, dans les corps quadratiques réels, une infinité de fractions continues périodiques uniformément bornées, avec une borne qui semble meilleure que celle connue jusqu’ici. Nous faisons cela en partant de développements en fractions continues de la même forme que ceux des réels n + n . Et ceci nous permet d’obtenir de plus qu’il existe une infinité de corps quadratiques contenant une infinité de développements en fractions continues périodiques formées seulement des entiers 1 et 2 . Nous...

Currently displaying 21 – 40 of 228