Affinely self-generating sets and morphisms.
Garth, David, Gouge, Adam (2007)
Journal of Integer Sequences [electronic only]
Hajime Kaneko (2012)
Acta Arithmetica
Taka-Aki Tanaka (1996)
Acta Arithmetica
Ernest Cesàro (1884)
Nouvelles annales de mathématiques : journal des candidats aux écoles polytechnique et normale
Jacques Arsac (1987)
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
Dil, Ayhan, Kurt, Veli, Cenkci, Mehmet (2007)
Journal of Integer Sequences [electronic only]
Chen, Kwang-Wu (2001)
Journal of Integer Sequences [electronic only]
Robert Karpe (1972)
Archivum Mathematicum
Gerhard Kramarz (1985/1986)
Mathematische Annalen
Yann Bugeaud, Florian Luca, Maurice Mignotte, Samir Siksek (2008)
Journal de Théorie des Nombres de Bordeaux
The famous problem of determining all perfect powers in the Fibonacci sequence and in the Lucas sequence has recently been resolved [10]. The proofs of those results combine modular techniques from Wiles’ proof of Fermat’s Last Theorem with classical techniques from Baker’s theory and Diophantine approximation. In this paper, we solve the Diophantine equations , with and , for all primes and indeed for all but primes . Here the strategy of [10] is not sufficient due to the sizes of...
Eğecioğlu, Ömer, Redmond, Timothy, Ryavec, Charles (2008)
The Electronic Journal of Combinatorics [electronic only]
Henry B. Mann, Ying Fou Wou (1986)
Monatshefte für Mathematik
Jorgen Cherly (1994)
Mathematica Scandinavica
Cao, Huiqin (2006)
The Electronic Journal of Combinatorics [electronic only]
Herbert S. Wilf, Doron Zeilberger (1992)
Inventiones mathematicae
Andrea Ossicini (2014)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
This paper treats about one of the most remarkable achievements by Riemann, that is the symmetric form of the functional equation for . We present here, after showing the first proof of Riemann, a new, simple and direct proof of the symmetric form of the functional equation for both the Eulerian Zeta function and the alternating Zeta function, connected with odd numbers. A proof that Euler himself could have arranged with a little step at the end of his paper “Remarques sur un beau rapport entre...
Bialostocki, Arie, Tran Dinh Luong (2009)
Integers
Ferrand, Emmanuel (2007)
The Electronic Journal of Combinatorics [electronic only]
Pah, C.H. (2008)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Song Guo (2011)
Acta Arithmetica