Displaying 41 – 60 of 62

Showing per page

Fonctions digitales le long des nombres premiers

Bruno Martin, Christian Mauduit, Joël Rivat (2015)

Acta Arithmetica

In a recent work we gave some estimations for exponential sums of the form n x Λ ( n ) e x p ( 2 i π ( f ( n ) + β n ) ) , where Λ denotes the von Mangoldt function, f a digital function, and β a real parameter. The aim of this work is to show how these results can be used to study the statistical properties of digital functions along prime numbers.

Fractions de Bernoulli-Carlitz et opérateurs q -Zeta

Frédéric Chapoton (2010)

Journal de Théorie des Nombres de Bordeaux

On introduit une déformation des séries de Dirichlet d’une variable complexe s , sous la forme d’un opérateur pour chaque nombre complexe s , agissant sur les séries formelles sans terme constant en une variable q . On montre que les fractions de Bernoulli-Carlitz sont les images de certains polynômes en q par les opérateurs associés à la fonction ζ de Riemann aux entiers négatifs.

Fully degenerate poly-Bernoulli numbers and polynomials

Taekyun Kim, Dae San Kim, Jong-Jin Seo (2016)

Open Mathematics

In this paper, we introduce the new fully degenerate poly-Bernoulli numbers and polynomials and inverstigate some properties of these polynomials and numbers. From our properties, we derive some identities for the fully degenerate poly-Bernoulli numbers and polynomials.

Funzione generatrice e polinomi incompleti di Fibonacci e Lucas

Wenchang Chu, Valentina Vicenti (2003)

Bollettino dell'Unione Matematica Italiana

I numeri incompleti di Fibonacci e di Lucas, introdotti da Filipponi (1996), sono entrambi generalizzati in forma di polinomi. Le loro funzioni generatrici ridondanti, naturali e condizionate sono stabilite attraverso serie formali di potenze. Le funzioni generatrici relative alle sequenze di numeri dovute a Pinter e Srivastava (1999) sono contenute come casi particolari.

Further remarks on Diophantine quintuples

Mihai Cipu (2015)

Acta Arithmetica

A set of m positive integers with the property that the product of any two of them is the predecessor of a perfect square is called a Diophantine m-tuple. Much work has been done attempting to prove that there exist no Diophantine quintuples. In this paper we give stringent conditions that should be met by a putative Diophantine quintuple. Among others, we show that any Diophantine quintuple a,b,c,d,e with a < b < c < d < e s a t i s f i e s d < 1.55·1072 a n d b < 6.21·1035 w h e n 4 a < b , w h i l e f o r b < 4 a o n e h a s e i t h e r c = a + b + 2√(ab+1) and d < 1 . 96 · 10 53 ...

Currently displaying 41 – 60 of 62