Displaying 121 – 140 of 296

Showing per page

Some solved and unsolved problems in combinatorial number theory, ii

P. Erdős, A. Sárközy (1993)

Colloquium Mathematicae

In an earlier paper [9], the authors discussed some solved and unsolved problems in combinatorial number theory. First we will give an update of some of these problems. In the remaining part of this paper we will discuss some further problems of the two authors.

Some sufficient conditions for zero asymptotic density and the expression of natural numbers as sum of values of special functions

Pavel Jahoda, Monika Pěluchová (2005)

Acta Mathematica Universitatis Ostraviensis

This paper generalizes some results from another one, namely [3]. We have studied the issues of expressing natural numbers as a sum of powers of natural numbers in paper [3]. It means we have studied sets of type A = { n 1 k 1 + n 2 k 2 + + n m k m n i { 0 } , i = 1 , 2 , m , ( n 1 , n 2 , , n m ) ( 0 , 0 , , 0 ) } , where k 1 , k 2 , , k m were given natural numbers. Now we are going to study a more general case, i.e. sets of natural numbers that are expressed as sum of integral parts of functional values of some special functions. It means that we are interested in sets of natural numbers in the form k = [ f 1 ( n 1 ) ] + [ f 2 ( n 2 ) ] + + [ f m ( n m ) ] .

Sommes des chiffres de multiples d'entiers

Cécile Dartyge, Gérald Tenenbaum (2005)

Annales de l'institut Fourier

Soit q , q 2 . Pour n , on note s q ( n ) la somme des chiffres de n en base q . Nous donnons des majorations de sommes d’exponentielles de la forme G ( x , y , θ ; α , 𝐡 ) = x < n x + y exp ( 2 i π ( α 1 s q ( h 1 n ) + + α r s q ( h r n ) + θ n ) ) , pour r * , 𝐡 * r et θ r . De telles sommes ont déjà été étudiées dans le cas r = 1 par Gelfond, et pour r 2 entre autre par Coquet et Solinas. Nos résultats étendent le domaine de validité en 𝐡 de ces précédents travaux pour r 2 , sont plus précis et ont l’avantage d’être uniformes en x et r et effectifs en 𝐡 . Ce contrôle soigneux des paramètres nous permet d’obtenir divers types d’applications....

Currently displaying 121 – 140 of 296