Square classes of Lucas sequences
Let be a fixed positive integer. A Lucas -pseudoprime is a Lucas pseudoprime for which there exists a Lucas sequence such that the rank of in is exactly , where is the signature of . We prove here that all but a finite number of Lucas -pseudoprimes are square free. We also prove that all but a finite number of Lucas -pseudoprimes are Carmichael-Lucas numbers.
We prove that every Sturmian word ω has infinitely many prefixes of the form UnVn3, where |Un| < 2.855|Vn| and limn→∞|Vn| = ∞. In passing, we give a very simple proof of the known fact that every Sturmian word begins in arbitrarily long squares.
In this paper we study the set of statistical cluster points of sequences in -dimensional spaces. We show that some properties of the set of statistical cluster points of the real number sequences remain in force for the sequences in -dimensional spaces too. We also define a notion of -statistical convergence. A sequence is -statistically convergent to a set if is a minimal closed set such that for every the set has density zero. It is shown that every statistically bounded sequence...