Displaying 1421 – 1440 of 2472

Showing per page

On sums of binomial coefficients modulo p²

Zhi-Wei Sun (2012)

Colloquium Mathematicae

Let p be an odd prime and let a be a positive integer. In this paper we investigate the sum k = 0 p a - 1 ( h p a - 1 k ) ( 2 k k ) / m k ( m o d p ² ) , where h and m are p-adic integers with m ≢ 0 (mod p). For example, we show that if h ≢ 0 (mod p) and p a > 3 , then k = 0 p a - 1 ( h p a - 1 k ) ( 2 k k ) ( - h / 2 ) k ( ( 1 - 2 h ) / ( p a ) ) ( 1 + h ( ( 4 - 2 / h ) p - 1 - 1 ) ) ( m o d p ² ) , where (·/·) denotes the Jacobi symbol. Here is another remarkable congruence: If p a > 3 then k = 0 p a - 1 ( p a - 1 k ) ( 2 k k ) ( - 1 ) k 3 p - 1 ( p a / 3 ) ( m o d p ² ) .

On sum-sets and product-sets of complex numbers

József Solymosi (2005)

Journal de Théorie des Nombres de Bordeaux

We give a simple argument that for any finite set of complex numbers A , the size of the the sum-set, A + A , or the product-set, A · A , is always large.

On terms of linear recurrence sequences with only one distinct block of digits

Diego Marques, Alain Togbé (2011)

Colloquium Mathematicae

In 2000, Florian Luca proved that F₁₀ = 55 and L₅ = 11 are the largest numbers with only one distinct digit in the Fibonacci and Lucas sequences, respectively. In this paper, we find terms of a linear recurrence sequence with only one block of digits in its expansion in base g ≥ 2. As an application, we generalize Luca's result by finding the Fibonacci and Lucas numbers with only one distinct block of digits of length up to 10 in its decimal expansion.

On Ternary Integral Recurrences

A. Schinzel (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

We prove that if a,b,c,d,e,m are integers, m > 0 and (m,ac) = 1, then there exist infinitely many positive integers n such that m|(an+b)cⁿ - deⁿ. Hence we derive a similar conclusion for ternary integral recurrences.

On the apostol-bernoulli polynomials

Qiu-Ming Luo (2004)

Open Mathematics

In the present paper, we obtain two new formulas of the Apostol-Bernoulli polynomials (see On the Lerch Zeta function. Pacific J. Math., 1 (1951), 161–167.), using the Gaussian hypergeometric functions and Hurwitz Zeta functions respectively, and give certain special cases and applications.

Currently displaying 1421 – 1440 of 2472