On the index of sequences over cyclic groups
Let and define , the -generalized Fibonacci sequence whose terms satisfy the recurrence relation , with initial conditions ( terms) and such that the first nonzero term is . The sequences and are the known Fibonacci and Tribonacci sequences, respectively. In 2005, Noe and Post made a conjecture related to the possible solutions of the Diophantine equation . In this note, we use transcendental tools to provide a general method for finding the intersections which gives evidence supporting...
We compare the growth of the least common multiple of the numbers and , where is a Lucas sequence and is some sequence of positive integers.
Suppose runners having nonzero distinct constant speeds run laps on a unit-length circular track. The Lonely Runner Conjecture states that there is a time at which a given runner is at distance at least from all the others. The conjecture has been already settled up to seven () runners while it is open for eight or more runners. In this paper the conjecture has been verified for four or more runners having some particular speeds using elementary tools.
Let P and Q be nonzero integers. The sequences of generalized Fibonacci and Lucas numbers are defined by U₀ = 0, U₁ = 1 and for n ≥ 1, and V₀ = 2, V₁ = P and for n ≥ 1, respectively. In this paper, we assume that P ≥ 1, Q is odd, (P,Q) = 1, Vₘ ≠ 1, and . We show that there is no integer x such that when m ≥ 1 and r is an even integer. Also we completely solve the equation for m ≥ 1 and r ≥ 1 when Q ≡ 7 (mod 8) and x is an even integer. Then we show that when P ≡ 3 (mod 4) and Q ≡ 1 (mod...