Displaying 1741 – 1760 of 2472

Showing per page

Product of three numbers being a square as a Ramsey property

M. Skałba (2010)

Colloquium Mathematicae

For any partition of a set of squarefree numbers with relative density greater than 3/4 into two parts, at least one part contains three numbers whose product is a square. Also generalizations to partitions into more than two parts are discussed.

Product sets cannot contain long arithmetic progressions

Dmitrii Zhelezov (2014)

Acta Arithmetica

Let B be a set of complex numbers of size n. We prove that the length of the longest arithmetic progression contained in the product set B.B = bb’ | b,b’ ∈ B cannot be greater than O((nlog²n)/(loglogn)) and present an example of a product set containing an arithmetic progression of length Ω(nlogn). For sets of complex numbers we obtain the upper bound O ( n 3 / 2 ) .

Products of factorials modulo p

Florian Luca, Pantelimon Stănică (2003)

Colloquium Mathematicae

We show that if p ≠ 5 is a prime, then the numbers 1 / p ( p m , . . . , m t ) | t 1 , m i 0 f o r i = 1 , . . . , t a n d i = 1 t m i = p cover all the nonzero residue classes modulo p.

Progressions arithmétiques dans les nombres premiers

Bernard Host (2004/2005)

Séminaire Bourbaki

Récemment, B. Green et T. Tao ont montré que : l’ensemble des nombres premiers contient des progressions arithmétiques de toutes longueurs répondant ainsi à une question ancienne à la formulation particulièrement simple. La démonstration n’utilise aucune des méthodes “transcendantes” ni aucun des grands théorèmes de la théorie analytique des nombres. Elle est écrite dans un esprit proche de celui de la théorie ergodique, en particulier de celui de la preuve par Furstenberg du théorème de Szemerédi,...

Propriétés arithmétiques des substitutions et automates infinis

Christian Mauduit (2006)

Annales de l’institut Fourier

L’objet de ce travail est d’étudier les propriétés arithmétiques et statistiques des mots infinis et des suites de nombres entiers engendrés par des substitutions sur un alphabet infini ou par des automates déterministes ayant un nombre infini dénombrable d’états. En particulier, nous montrons que si u est une suite de nombres entiers engendrée par un automate dont le graphe étiqueté associé représente une marche aléatoire de moyenne nulle sur un réseau de d ( d entier positif), alors la suite ( n α ) n u ...

Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci

Nataliya Chekhova, Pascal Hubert, Ali Messaoudi (2001)

Journal de théorie des nombres de Bordeaux

Nous étudions certaines propriétés combinatoires, ergodiques et arithmétiques du point fixe de la substitution de Tribonacci (introduite par G. Rauzy) et de la rotation du tore 𝕋 2 qui lui est associée. Nous établissons une généralisation géométrique du théorème des trois distances et donnons une formule explicite pour la fonction de récurrence du point fixe. Nous donnons des propriétés d’approximation diophantienne du vecteur de la rotation de 𝕋 2 : nous montrons, que pour une norme adaptée, la suite...

Propriétés d'invariance des mots sturmiens

Bruno Parvaix (1997)

Journal de théorie des nombres de Bordeaux

Un mot sturmien est un mot infini, binaire, équilibré et non ultimement périodique. On détermine l’évolution de la pente et de l’intercept d’un mot sturmien, sous l’action du monoïde de Sturm. À l’aide des matrices de Raney, on énonce une condition que doivent satisfaire les pentes des mots laissés fixes par une substitution non triviale. Puis on prouve que cette condition est suffisante pour un ensemble particulier de mots dont l’intercept est une homographie de la pente.

Pseudoprime Cullen and Woodall numbers

Florian Luca, Igor E. Shparlinski (2007)

Colloquium Mathematicae

We show that if a > 1 is any fixed integer, then for a sufficiently large x>1, the nth Cullen number Cₙ = n2ⁿ +1 is a base a pseudoprime only for at most O(x log log x/log x) positive integers n ≤ x. This complements a result of E. Heppner which asserts that Cₙ is prime for at most O(x/log x) of positive integers n ≤ x. We also prove a similar result concerning the pseudoprimality to base a of the Woodall numbers given by Wₙ = n2ⁿ - 1 for all n ≥ 1.

Currently displaying 1741 – 1760 of 2472