Arithmetic of Hermitian forms.
We shall describe how to construct a fundamental solution for the Pell equation over finite fields of characteristic . Especially, a complete description of the structure of these fundamental solutions will be given using Chebyshev polynomials. Furthermore, we shall describe the structure of the solutions of the general Pell equation .
2000 Mathematics Subject Classification: Primary: 11D09, 11A55, 11C08, 11R11, 11R29; Secondary: 11R65, 11S40; 11R09.This paper contains proofs of conjectures made in [16] on class number 2 and what this author has dubbed the Euler-Rabinowitsch polynomial for real quadratic fields. As well, we complete the list of Richaud-Degert types given in [16] and show how the behaviour of the Euler-Rabinowitsch polynomials and certain continued fraction expansions come into play in the complete determination...
The purpose of this paper is to prove that the common terms of linear recurrences and have at most common terms if , and have at most three common terms if where and are fixed positive integers and is a prime, such that neither nor is perfect square, further are nonzero integers satisfying the equations and .
This paper investigates the system of equations in positive integers , , , , where and are positive integers with . In case of we would obtain the classical problem of congruent numbers. We provide a procedure to solve the simultaneous equations above for a class of the coefficient with the condition . Further, under same condition, we even prove a finiteness theorem for arbitrary nonzero .