Displaying 261 – 280 of 314

Showing per page

The Diophantine Equation X³ = u+v over Real Quadratic Fields

Takaaki Kagawa (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

Let k be a real quadratic field and let k and k × be the ring of integers and the group of units, respectively. A method of solving the Diophantine equation X³ = u+v ( X k , u , v k × ) is developed.

The divisor problem for binary cubic forms

Tim Browning (2011)

Journal de Théorie des Nombres de Bordeaux

We investigate the average order of the divisor function at values of binary cubic forms that are reducible over and discuss some applications.

The integral points on elliptic curves y 2 = x 3 + ( 36 n 2 - 9 ) x - 2 ( 36 n 2 - 5 )

Hai Yang, Ruiqin Fu (2013)

Czechoslovak Mathematical Journal

Let n be a positive odd integer. In this paper, combining some properties of quadratic and quartic diophantine equations with elementary analysis, we prove that if n > 1 and both 6 n 2 - 1 and 12 n 2 + 1 are odd primes, then the general elliptic curve y 2 = x 3 + ( 36 n 2 - 9 ) x - 2 ( 36 n 2 - 5 ) has only the integral point ( x , y ) = ( 2 , 0 ) . By this result we can get that the above elliptic curve has only the trivial integral point for n = 3 , 13 , 17 etc. Thus it can be seen that the elliptic curve y 2 = x 3 + 27 x - 62 really is an unusual elliptic curve which has large integral points.

The Ljunggren equation revisited

Konstantinos A. Draziotis (2007)

Colloquium Mathematicae

We study the Ljunggren equation Y² + 1 = 2X⁴ using the "multiplication by 2" method of Chabauty.

The method of infinite ascent applied on A 4 ± n B 3 = C 2

Susil Kumar Jena (2013)

Czechoslovak Mathematical Journal

Each of the Diophantine equations A 4 ± n B 3 = C 2 has an infinite number of integral solutions ( A , B , C ) for any positive integer n . In this paper, we will show how the method of infinite ascent could be applied to generate these solutions. We will investigate the conditions when A , B and C are pair-wise co-prime. As a side result of this investigation, we will show a method of generating an infinite number of co-prime integral solutions ( A , B , C ) of the Diophantine equation a A 3 + c B 3 = C 2 for any co-prime integer pair ( a , c ) .

The p -part of Tate-Shafarevich groups of elliptic curves can be arbitrarily large

Remke Kloosterman (2005)

Journal de Théorie des Nombres de Bordeaux

In this paper we show that for every prime p 5 the dimension of the p -torsion in the Tate-Shafarevich group of E / K can be arbitrarily large, where E is an elliptic curve defined over a number field K , with [ K : ] bounded by a constant depending only on p . From this we deduce that the dimension of the p -torsion in the Tate-Shafarevich group of A / can be arbitrarily large, where A is an abelian variety, with dim A bounded by a constant depending only on p .

Currently displaying 261 – 280 of 314