Squares in products with terms in an arithmetic progression
Using only elementary arguments, Cassels solved the Diophantine equation (x-1)³ + x³ + (x+1)³ = z² (with x, z ∈ ℤ). The generalization (with x, z, n ∈ ℤ and n ≥ 2) was considered by Zhongfeng Zhang who solved it for k ∈ 2,3,4 using Frey-Hellegouarch curves and their corresponding Galois representations. In this paper, by employing some sophisticated refinements of this approach, we show that the only solutions for k = 5 have x = z = 0, and that there are no solutions for k = 6. The chief innovation...
Recently, Miyazaki and Togbé proved that for any fixed odd integer b ≥ 5 with b ≠ 89, the Diophantine equation has only the solution (x,y,z) = (1,1,1). We give an extension of this result.
It is shown that for a given squarefree positive integer D, the equation of the title has no solutions in integers x > 0, m > 0, n ≥ 3 and y odd, nor unless D ≡ 14 (mod 16) in integers x > 0, m = 0, n ≥ 3, y > 0, provided in each case that n does not divide the class number of the imaginary quadratic field containing √(-2D), except for a small number of (stated) exceptions.
Let , be the sets of all integers and positive integers, respectively. Let be a fixed odd prime. Recently, there have been many papers concerned with solutions of the equation , , , , , , And all solutions of it have been determined for the cases , , and . In this paper, we mainly concentrate on the case , and using certain recent results on exponential diophantine equations including the famous Catalan equation, all solutions of the equation , , , , , , , are determined....