.
Le pgcd de quantités de la forme et a été étudié dans différentes situations. Dans la première partie de ce texte nous prouverons que si et appartiennent à , le pgcd en question peut être borné indépendamment de dans de nombreux cas. Ceci répond en particulier à une question de J. Silverman. Dans la deuxième partie nous étudierons un problème analogue dans la situation des modules de Drinfeld.
On démontre ici un lemme de Hensel pour les opérateurs différentiels. On en déduit un théorème de factorisation pour des opérateurs différentiels à coefficients dans une extension liouvillienne transcendante d’un corps valué. On obtient en particulier un théorème de factorisation pour des opérateurs différentiels à coefficients dans une extension de par un nombre fini d’exponentielles et de logarithmes algébriquement indépendants sur .
The structure of the group and Fermat’s little theorem are the basis for some of the best-known primality testing algorithms. Many related concepts arise: Euler’s totient function and Carmichael’s lambda function, Fermat pseudoprimes, Carmichael and cyclic numbers, Lehmer’s totient problem, Giuga’s conjecture, etc. In this paper, we present and study analogues to some of the previous concepts arising when we consider the underlying group . In particular, we characterize Gaussian Carmichael numbers...
The Fermat equation is solved in integral two by two matrices of determinant one as well as in finite order integral three by three matrices.
Let Fₙ be the Fibonacci sequence defined by F₀=0, F₁=1, . It is well known that for any odd prime p, where (-) denotes the Legendre symbol. In 1960 D. D. Wall [13] asked whether is always impossible; up to now this is still open. In this paper the sum is expressed in terms of Fibonacci numbers. As applications we obtain a new formula for the Fibonacci quotient and a criterion for the relation (if p ≡ 1 (mod 4), where p ≠ 5 is an odd prime. We also prove that the affirmative answer to...