Displaying 481 – 500 of 1560

Showing per page

Les nombres de Lucas et Lehmer sans diviseur primitif

Mourad Abouzaid (2006)

Journal de Théorie des Nombres de Bordeaux

Y. Bilu, G. Hanrot et P.M. Voutier ont montré que pour toute paire de Lucas ou de Lehmer ( α , β ) et pour tout n > 30 , les entiers, dits nombres de Lucas (ou de Lehmer) u n ( α , β ) admettaient un diviseur primitif. L’objet de ce papier est de compléter la liste des nombres de Lucas et de Lehmer défectueux donnée par P.M. Voutier, afin d’en avoir une liste exhaustive.

Linear congruences and a conjecture of Bibak

Chinnakonda Gnanamoorthy Karthick Babu, Ranjan Bera, Balasubramanian Sury (2024)

Czechoslovak Mathematical Journal

We address three questions posed by K. Bibak (2020), and generalize some results of K. Bibak, D. N. Lehmer and K. G. Ramanathan on solutions of linear congruences i = 1 k a i x i b ( mod n ) . In particular, we obtain explicit expressions for the number of solutions, where x i ’s are squares modulo n . In addition, we obtain expressions for the number of solutions with order restrictions x 1 x k or with strict order restrictions x 1 > > x k in some special cases. In these results, the expressions for the number of solutions involve Ramanujan...

Local-global principle for quadratic forms over fraction fields of two-dimensional henselian domains

Yong HU (2012)

Annales de l’institut Fourier

Let R be a 2-dimensional normal excellent henselian local domain in which 2 is invertible and let L and k be its fraction field and residue field respectively. Let Ω R be the set of rank 1 discrete valuations of L corresponding to codimension 1 points of regular proper models of Spec R . We prove that a quadratic form q over L satisfies the local-global principle with respect to Ω R in the following two cases: (1) q has rank 3 or 4; (2) q has rank 5 and R = A [ [ y ] ] , where A is a complete discrete valuation ring with...

Currently displaying 481 – 500 of 1560