Number of solutions in a box of a linear homogeneous equation in an Abelian group
Let F(X,Y) be an irreducible binary cubic form with integer coefficients and positive discriminant D. Let k be a positive integer satisfying . We give improved upper bounds for the number of primitive solutions of the Thue inequality .
We study numerical semigroups with the property that if is the multiplicity of and is the least element of congruent with modulo , then . The set of numerical semigroups with this property and fixed multiplicity is bijective with an affine semigroup and consequently it can be described by a finite set of parameters. Invariants like the gender, type, embedding dimension and Frobenius number are computed for several families of this kind of numerical semigroups.
Si un système d’équations polynomiales à coefficients entiers admet une solution dans , il en admet sur tout complété -adique ou réel de . La réciproque a été démontrée par Hasse pour les quadriques, mais elle est fausse en général. Une grande partie des contre-exemples connus peuvent être expliqués à l’aide de l’obstruction de Brauer-Manin, basée sur la théorie du corps de classe. Il est donc naturel de se demander si, pour certaines classes de variétés, cette obstruction est la seule. Le but...