On Hall's conjecture
We study integral similitude 3 × 3-matrices and those positive integers which occur as products of their row elements, when matrices are symmetric with the same numbers in each row. It turns out that integers for which nontrivial matrices of this type exist define elliptic curves of nonzero rank and are closely related to generalized cubic Fermat equations.
For any positive integer , let be the -generalized Pell sequence which starts with ( terms) with the linear recurrence Let be Narayana’s sequence given by The purpose of this paper is to determine all -Pell numbers which are sums of two Narayana’s numbers. More precisely, we study the Diophantine equation in nonnegative integers , , and .
This paper is concerned with non-trivial solvability in -adic integers of systems of additive forms. Assuming that the congruence equation has a solution with we have proved that any system of additive forms of degree with at least variables, has always non-trivial -adic solutions, provided . The assumption of the solubility of the above congruence equation is guaranteed, for example, if .
Let and let be the -generalized Pell sequence defined by for with initial conditions In this study, we handle the equation in positive integers , , , such that and give an upper bound on Also, we will show that the equation with has only one solution given by