A note on the number of solutions of the generalized Ramanujan-Nagell equation
Let be a positive integer, and let be an odd prime with . In this paper we use a result on the rational approximation of quadratic irrationals due to M. Bauer, M. A. Bennett: Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation. Ramanujan J. 6 (2002), 209–270, give a better upper bound for , and also prove that if the equation has integer solutions , the least solution of the equation satisfies , and , where is an effectively computable constant...
S. S. Pillai proved that for a fixed positive integer , the exponential Diophantine equation , , has only finitely many solutions in integers and . We prove that when is of the form , the above equation has no solution in integers and with .