Displaying 21 – 40 of 42

Showing per page

Réalisation de formes -bilinéaires symétriques comme formes trace hermitiennes amplifiées

Grégory Berhuy (2000)

Journal de théorie des nombres de Bordeaux

Dans cet article, on montre de manière explicite que toute forme -bilinéaire symétrique non dégénérée de rang pair, et non -isomorphe au plan hyperbolique, se réalise comme forme trace hermitienne amplifiée d’une algèbre [ α ] , où α est un entier algébrique. Plus précisemment, on montre que pour tout S M 2 n ( ) symétrique, avec det S 0 (et det S ¬ - 1 (mod * 2 ) si n = 1 ), il existe un entier algébrique α , une involution -linéaire σ de ( α ) , λ ( α ) σ -symétrique et une -base v 1 , , v 2 n d’un idéal de [ α ] tels que S = ( T r ( α ) / ( λ v i v j σ ) ) .

Sur la structure hermitienne de la racine carrée de la codifférente

Christine Bachoc (1993)

Annales de l'institut Fourier

Soit K un corps de nombres galoisien sur de degré impair, et soit G son groupe de Galois. Alors il existe un unique idéal fractionnaire de K qui soit unimodulaire pour la forme quadratique Trace K / ( x 2 ) . Cet idéal est la racine carrée de la codifférente, et est noté A K . Dans cet article, on décrit un représentant explicite de la classe de [ G ] -isométrie du couple ( A K , Trace K / ( x 2 ) ) , ne dépendant que des nombres premiers p sauvagement ramifiés dans K , et dont le degré de ramification est différent de p .

Unitary groups acting on hyperbolic substructures

M. Alessandra Vaccaro (2005)

Bollettino dell'Unione Matematica Italiana

Given a quadratic extension L/K of fields and a regular λ-Hermitian space (V, h) of finite dimension over L, we study the orbits of the group of isometries of (V, h) in the set of hyperbolic K-substructures of V.

Currently displaying 21 – 40 of 42