Shifted B-numbers as a set of uniqueness for additive and multiplicative functions
K.-H. Indlekofer (2005)
Acta Arithmetica
Manabu Murata (2006)
Acta Arithmetica
Erik A. Lippa (1974)
Mathematische Annalen
Louis Mahé (1982)
Mathematische Annalen
M. Marshall, L. Walter (1990)
Mathematische Zeitschrift
Detlev W. Hoffmann, Ahmed Laghribi (2013)
Bulletin de la Société Mathématique de France
Étant donnés un corps commutatif de caractéristique , des formes bilinéaires d’Albert et des -formes quadratiques de Pfister, ou des -formes bilinéaires de Pfister et des formes quadratiques d’Albert (resp. des formes bilinéaires d’Albert et des -formes bilinéaires de Pfister avec la condition que , , soient anisotropes), alors on montre que (resp.) si et seulement si est semblable à . Un exemple montre que la condition de l’anisotropie est nécessaire dans le cas bilinéaire....
T. Nadesalingam, Jane Pitman (1989)
Journal für die reine und angewandte Mathematik
Wolfgang M. Schmidt (1980)
Monatshefte für Mathematik
R. Cook (1973)
Acta Arithmetica
R. Cook (1974)
Acta Arithmetica
Bertram Huppert (1970)
Mathematische Zeitschrift
W.A.M. Janssen (1984)
Mathematische Annalen
W.A.M. Janssen (1985)
Mathematische Annalen
Wai Kiu Chan, Lenny Fukshansky (2010)
Acta Arithmetica
Albrecht Pfister (1997)
Acta Arithmetica
A. Schinzel (2011)
Bulletin of the Polish Academy of Sciences. Mathematics
The paper consists of two parts, both related to problems of Lubelski, but unrelated otherwise. Theorem 1 enumerates for a = 1,2 the finitely many positive integers D such that every odd positive integer L that divides x² +Dy² for (x,y) = 1 has the property that either L or is properly represented by x²+Dy². Theorem 2 asserts the following property of finite extensions k of ℚ : if a polynomial f ∈ k[x] for almost all prime ideals of k has modulo at least v linear factors, counting multiplicities,...
Baeza, Ricardo (2001)
Documenta Mathematica
K. Győry (1993)
Colloquium Mathematicae
1. Introduction. The purpose of this paper is to establish some general finiteness results (cf. Theorems 1 and 2) for resultant equations over an arbitrary finitely generated integral domain R over ℤ. Our Theorems 1 and 2 improve and generalize some results of Wirsing [25], Fujiwara [6], Schmidt [21] and Schlickewei [17] concerning resultant equations over ℤ. Theorems 1 and 2 are consequences of a finiteness result (cf. Theorem 3) on decomposable form equations over R. Some applications of Theorems...
Gordon Pall (1973)
Acta Arithmetica
M. Dodson (1982)
Acta Arithmetica