Interaction sums and action of Hecke operators on theta-series
Let k and n be positive even integers. For a cuspidal Hecke eigenform h in the Kohnen plus space of weight k - n/2 + 1/2 for Γ₀(4), let f be the corresponding primitive form of weight 2k-n for SL₂(ℤ) under the Shimura correspondence, and Iₙ(h) the Duke-Imamoḡlu-Ikeda lift of h to the space of cusp forms of weight k for Spₙ(ℤ). Moreover, let be the first Fourier-Jacobi coefficient of Iₙ(h), and be the cusp form in the generalized Kohnen plus space of weight k - 1/2 corresponding to under the...
We prove that the Dirichlet series of Rankin–Selberg type associated with any pair of (not necessarily cuspidal) Siegel modular forms of degree and weight has meromorphic continuation to . Moreover, we show that the Petersson product of any pair of square–integrable modular forms of weight may be expressed in terms of the residue at of the associated Dirichlet series.
Using the special values of Siegel modular functions, we construct Minkowski units for the ray class field of modulo . Our work is based on investigating the prime decomposition of the special values and describing explicitly the action of the Galois group for the special values. Futhermore we construct the full unit group of using modular and circular units under the GRH.