Dedekind sums for Hecke groups
In this paper we study three new shifted sums of Apostol-Dedekind-Rademacher type. The first sums are written in terms of Jacobi modular forms, and the second sums in terms of cotangent and the third sums are expressed in terms of special values of the Barnes multiple zeta functions. These sums generalize the classical Dedekind-Rademacher sums. The main aim of this paper is to state and prove the Dedekind reciprocity laws satisfied by these new sums. As an application of our Dedekind reciprocity...
We study the convergence properties of Dirichlet series for a bounded linear operator T in a Banach space X. For an increasing sequence of positive numbers and a sequence of functions analytic in neighborhoods of the spectrum σ(T), the Dirichlet series for is defined by D[f,μ;z](T) = ∑n=0∞ e-μnz fn(T), z∈ ℂ. Moreover, we introduce a family of summation methods called Dirichlet methods and study the ergodic properties of Dirichlet averages for T in the uniform operator topology.