Previous Page 5

Displaying 81 – 94 of 94

Showing per page

The Analytic Rank of a Family of Jacobians of Fermat Curves

Tomasz Jędrzejak (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

We study the family of curves F m ( p ) : x p + y p = m , where p is an odd prime and m is a pth power free integer. We prove some results about the distribution of root numbers of the L-functions of the hyperelliptic curves associated to the curves F m ( p ) . As a corollary we conclude that the jacobians of the curves F m ( 5 ) with even analytic rank and those with odd analytic rank are equally distributed.

The arithmetic of curves defined by iteration

Wade Hindes (2015)

Acta Arithmetica

We show how the size of the Galois groups of iterates of a quadratic polynomial f can be parametrized by certain rational points on the curves Cₙ: y² = fⁿ(x) and their quadratic twists (here fⁿ denotes the nth iterate of f). To that end, we study the arithmetic of such curves over global and finite fields, translating key problems in the arithmetic of polynomial iteration into a geometric framework. This point of view has several dynamical applications. For instance, we establish a maximality theorem...

The cuspidal torsion packet on hyperelliptic Fermat quotients

David Grant, Delphy Shaulis (2004)

Journal de Théorie des Nombres de Bordeaux

Let 7 be a prime, C be the non-singular projective curve defined over by the affine model y ( 1 - y ) = x , the point of C at infinity on this model, J the Jacobian of C , and φ : C J the albanese embedding with as base point. Let ¯ be an algebraic closure of . Taking care of a case not covered in [12], we show that φ ( C ) J tors ( ¯ ) consists only of the image under φ of the Weierstrass points of C and the points ( x , y ) = ( 0 , 0 ) and ( 0 , 1 ) , where J tors denotes the torsion points of J .

The rank of hyperelliptic Jacobians in families of quadratic twists

Sebastian Petersen (2006)

Journal de Théorie des Nombres de Bordeaux

The variation of the rank of elliptic curves over in families of quadratic twists has been extensively studied by Gouvêa, Mazur, Stewart, Top, Rubin and Silverberg. It is known, for example, that any elliptic curve over admits infinitely many quadratic twists of rank 1 . Most elliptic curves have even infinitely many twists of rank 2 and examples of elliptic curves with infinitely many twists of rank 4 are known. There are also certain density results. This paper studies the variation of the...

Torsion and Tamagawa numbers

Dino Lorenzini (2011)

Annales de l’institut Fourier

Let K be a number field, and let A / K be an abelian variety. Let c denote the product of the Tamagawa numbers of A / K , and let A ( K ) tors denote the finite torsion subgroup of A ( K ) . The quotient c / | A ( K ) tors | is a factor appearing in the leading term of the L -function of A / K in the conjecture of Birch and Swinnerton-Dyer. We investigate in this article possible cancellations in this ratio. Precise results are obtained for elliptic curves over or quadratic extensions K / , and for abelian surfaces A / . The smallest possible ratio...

Torsion points on families of simple abelian surfaces and Pell's equation over polynomial rings (with an appendix by E. V. Flynn)

David Masser, Umberto Zannier (2015)

Journal of the European Mathematical Society

In recent papers we proved a special case of a variant of Pink’s Conjecture for a variety inside a semiabelian scheme: namely for any curve inside anything isogenous to a product of two elliptic schemes. Here we go beyond the elliptic situation by settling the crucial case of any simple abelian surface scheme defined over the field of algebraic numbers, thus confirming an earlier conjecture of Shou-Wu Zhang. This is of particular relevance in the topic, also in view of very recent counterexamples...

Trivial points on towers of curves

Xavier Xarles (2013)

Journal de Théorie des Nombres de Bordeaux

In order to study the behavior of the points in a tower of curves, we introduce and study trivial points on towers of curves, and we discuss their finiteness over number fields. We relate the problem of proving that the only rational points are the trivial ones at some level of the tower, to the unboundeness of the gonality of the curves in the tower, which we show under some hypothesis.

Currently displaying 81 – 94 of 94

Previous Page 5