A functional equation originating from elliptic curves.
Park, Won-Gil, Bae, Jae-Hyeong (2008)
Abstract and Applied Analysis
J. Guardia (2000)
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales
Andreas Enge, Pierrick Gaudry (2002)
Acta Arithmetica
Y. Nakkajima, Y. Taguchi (1991)
Journal für die reine und angewandte Mathematik
R. Clement Fernández, J. M. Echarri Hernández, E. J. Gómez Ayala (2011)
Acta Arithmetica
Brendan Creutz (2012)
Acta Arithmetica
G. R. Everest (1989)
Compositio Mathematica
Joseph H. Silverman, José Felipe Voloch (2009)
Acta Arithmetica
Andrew V. Sutherland (2012)
Journal de Théorie des Nombres de Bordeaux
Let be a number field. We consider a local-global principle for elliptic curves that admit (or do not admit) a rational isogeny of prime degree . For suitable (including ), we prove that this principle holds for all , and for , but find a counterexample when for an elliptic curve with -invariant . For we show that, up to isomorphism, this is the only counterexample.
E. Kowalski, P. Michel (2000)
Acta Arithmetica
J. A. Fernández (2008)
Revista Matemática Iberoamericana
Dhillon, Ajneet, Mináč, Ján (2006)
The New York Journal of Mathematics [electronic only]
Dasbach, Oliver T. (2008)
The Electronic Journal of Combinatorics [electronic only]
Jain, Sonal (2010)
The New York Journal of Mathematics [electronic only]
D. Masser (1976)
Acta Arithmetica
Hiroshi Ito (2012)
Acta Arithmetica
Campbell, Garikai (2003)
Journal of Integer Sequences [electronic only]
Ulas, Maciej (2005)
Journal of Integer Sequences [electronic only]
Enrico Bombieri, Umberto Zannier (2001)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
We study the behaviour of the absolute Weil height of algebraic numbers in certain infinite extensions of . In particular, we obtain a Northcott type property for infinite abelian extensions of finite exponent and also a Bogomolov type property for certain fields which are a -adic analog of totally real fields. Moreover, we obtain a non-archimedean analog of a uniform distribution theorem of Bilu in the archimedean case.
Mark Watkins (2006)
Journal de Théorie des Nombres de Bordeaux
We investigate a problem considered by Zagier and Elkies, of finding large integral points on elliptic curves. By writing down a generic polynomial solution and equating coefficients, we are led to suspect four extremal cases that still might have nondegenerate solutions. Each of these cases gives rise to a polynomial system of equations, the first being solved by Elkies in 1988 using the resultant methods of Macsyma, with there being a unique rational nondegenerate solution. For the second case...