Displaying 21 – 40 of 1274

Showing per page

A local-global principle for rational isogenies of prime degree

Andrew V. Sutherland (2012)

Journal de Théorie des Nombres de Bordeaux

Let be a number field. We consider a local-global principle for elliptic curves that admit (or do not admit) a rational isogeny of prime degree . For suitable (including ), we prove that this principle holds for all , and for , but find a counterexample when for an elliptic curve with -invariant . For we show that, up to isomorphism, this is the only counterexample.

A Note on heights in certain infinite extensions of

Enrico Bombieri, Umberto Zannier (2001)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We study the behaviour of the absolute Weil height of algebraic numbers in certain infinite extensions of . In particular, we obtain a Northcott type property for infinite abelian extensions of finite exponent and also a Bogomolov type property for certain fields which are a -adic analog of totally real fields. Moreover, we obtain a non-archimedean analog of a uniform distribution theorem of Bilu in the archimedean case.

A note on integral points on elliptic curves

Mark Watkins (2006)

Journal de Théorie des Nombres de Bordeaux

We investigate a problem considered by Zagier and Elkies, of finding large integral points on elliptic curves. By writing down a generic polynomial solution and equating coefficients, we are led to suspect four extremal cases that still might have nondegenerate solutions. Each of these cases gives rise to a polynomial system of equations, the first being solved by Elkies in 1988 using the resultant methods of Macsyma, with there being a unique rational nondegenerate solution. For the second case...

Currently displaying 21 – 40 of 1274