Linear forms and simultaneous approximations
For , , , let be the -th polylogarithm of . We prove that for any non-zero algebraic number such that , the -vector space spanned by has infinite dimension. This result extends a previous one by Rivoal for rational . The main tool is a method introduced by Fischler and Rivoal, which shows the coefficients of the polylogarithms in the relevant series to be the unique solution of a suitable Padé approximation problem.