Page 1

Displaying 1 – 8 of 8

Showing per page

Metric Diophantine approximation on the middle-third Cantor set

Yann Bugeaud, Arnaud Durand (2016)

Journal of the European Mathematical Society

Let μ 2 be a real number and let ( μ ) denote the set of real numbers approximable at order at least μ by rational numbers. More than eighty years ago, Jarník and, independently, Besicovitch established that the Hausdorff dimension of ( μ ) is equal to 2 / μ . We investigate the size of the intersection of ( μ ) with Ahlfors regular compact subsets of the interval [ 0 , 1 ] . In particular, we propose a conjecture for the exact value of the dimension of ( μ ) intersected with the middle-third Cantor set and give several results...

Multiplicative zero-one laws and metric number theory

Victor Beresnevich, Alan Haynes, Sanju Velani (2013)

Acta Arithmetica

We develop the classical theory of Diophantine approximation without assuming monotonicity or convexity. A complete 'multiplicative' zero-one law is established akin to the 'simultaneous' zero-one laws of Cassels and Gallagher. As a consequence we are able to establish the analogue of the Duffin-Schaeffer theorem within the multiplicative setup. The key ingredient is the rather simple but nevertheless versatile 'cross fibering principle'. In a nutshell it enables us to 'lift' zero-one laws to higher...

Currently displaying 1 – 8 of 8

Page 1