Displaying 61 – 80 of 343

Showing per page

Dyadic diaphony of digital sequences

Friedrich Pillichshammer (2007)

Journal de Théorie des Nombres de Bordeaux

The dyadic diaphony is a quantitative measure for the irregularity of distribution of a sequence in the unit cube. In this paper we give formulae for the dyadic diaphony of digital ( 0 , s ) -sequences over 2 , s = 1 , 2 . These formulae show that for fixed s { 1 , 2 } , the dyadic diaphony has the same values for any digital ( 0 , s ) -sequence. For s = 1 , it follows that the dyadic diaphony and the diaphony of special digital ( 0 , 1 ) -sequences are up to a constant the same. We give the exact asymptotic order of the dyadic diaphony of digital...

Currently displaying 61 – 80 of 343