Previous Page 2

Displaying 21 – 33 of 33

Showing per page

Introduction to Liouville Numbers

Adam Grabowski, Artur Korniłowicz (2017)

Formalized Mathematics

The article defines Liouville numbers, originally introduced by Joseph Liouville in 1844 [17] as an example of an object which can be approximated “quite closely” by a sequence of rational numbers. A real number x is a Liouville number iff for every positive integer n, there exist integers p and q such that q > 1 and [...] It is easy to show that all Liouville numbers are irrational. Liouville constant, which is also defined formally, is the first transcendental (not algebraic) number. It is...

Invariant densities for random β -expansions

Karma Dajani, Martijn de Vries (2007)

Journal of the European Mathematical Society

Let β > 1 be a non-integer. We consider expansions of the form i = 1 d i / β i , where the digits ( d i ) i 1 are generated by means of a Borel map K β defined on { 0 , 1 } × [ 0 , β ( β 1 ) ] . We show existence and uniqueness of a K β -invariant probability measure, absolutely continuous with respect to m p λ , where m p is the Bernoulli measure on { 0 , 1 } with parameter p ( 0 < p < 1 ) and λ is the normalized Lebesgue measure on [ 0 , β ( β 1 ) ] . Furthermore, this measure is of the form m p μ β , p , where μ β , p is equivalent to λ . We prove that the measure of maximal entropy and m p λ are mutually singular. In...

Irreducible Sobol' sequences in prime power bases

Henri Faure, Christiane Lemieux (2016)

Acta Arithmetica

Sobol' sequences are a popular family of low-discrepancy sequences, in spite of requiring primitive polynomials instead of irreducible ones in later constructions by Niederreiter and Tezuka. We introduce a generalization of Sobol' sequences that removes this shortcoming and that we believe has the potential of becoming useful for practical applications. Indeed, these sequences preserve two important properties of the original construction proposed by Sobol': their generating matrices are non-singular...

Irregularities of continuous distributions

Michael Drmota (1989)

Annales de l'institut Fourier

This paper deals with a continuous analogon to irregularities of point distributions. If a continuous fonction x : [ 0 , 1 ] X where X is a compact body, is interpreted as a particle’s movement in time, then the discrepancy measures the difference between the particle’s stay in a proper subset and the volume of the subset. The essential part of this paper is to give lower bounds for the discrepancy in terms of the arc length of x ( t ) , 0 t 1 . Furthermore it is shown that these estimates are the best possible despite of...

Currently displaying 21 – 33 of 33

Previous Page 2