A new upper bound on the star discrepancy of -sequences.
Let denote the set of –approximable points in . The classical Khintchine–Groshev theorem assumes a monotonicity condition on the approximating functions . Removing monotonicity from the Khintchine–Groshev theorem is attributed to different authors for different cases of and . It can not be removed for as Duffin–Schaeffer provided the counter example. We deal with the only remaining case and thereby remove all unnecessary conditions from the Khintchine–Groshev theorem.
1. Introduction. Given x in (0,1], let x = [d₁(x),d₂(x),...] denote the Engel expansion of x, that is, (1) , where is a sequence of positive integers satisfying d₁(x) ≥ 2 and for j ≥ 1. (See [3].) In [3], János Galambos proved that for almost all x ∈ (0,1], (2) He conjectured ([3], P132) that the Hausdorff dimension of the set where (2) fails is one. In this paper, we prove this conjecture: Theorem. . We use L¹ to denote the one-dimensional Lebesgue measure on (0,1] and to denote the Hausdorff...
In this paper we derive a sequence from a movement of center of~mass of arbitrary two planets in some solar system, where the planets circle on concentric circles in a same plane. A trajectory of center of mass of the planets is discussed. A sequence of points on the trajectory is chosen. Distances of the points to the origin are calculated and a distribution function of a sequence of the distances is found.