Étude d'une somme arithmétique multiple liée à la fonction de Möbius
Let be the moduli space of -pointed Riemann surfaces of genus . Denote by the Deligne-Mumford compactification of . In the present paper, we calculate the orbifold and the ordinary Euler characteristic of for any and such that .
Let χ be a primitive Dirichlet character of conductor q and denote by L(z,χ) the associated L-series. We provide an explicit upper bound for |L(1,χ)| when 3 divides q.
We prove that for any real there are infinitely many values of with and such thatThe proof relies on an effective version of Kronecker’s approximation theorem.
Une notion importante qui a émergé de la théorie analytique des fonctions ces dernières années, est celle de famille. Par exemple les familles de fonctions interviennent naturellement dans le modèle probabiliste des matrices aléatoires de Katz/Sarnak qui vise à prédire la répartition des zéros des fonctions . L’analyse des fonctions en famille intervient également dans la résolution (inconditionnelle) de divers problèmes ayant une signification arithmétique profonde, tel que le problème de...