Displaying 121 – 140 of 206

Showing per page

On the parity of generalized partition functions, III

Fethi Ben Saïd, Jean-Louis Nicolas, Ahlem Zekraoui (2010)

Journal de Théorie des Nombres de Bordeaux

Improving on some results of J.-L. Nicolas [15], the elements of the set 𝒜 = 𝒜 ( 1 + z + z 3 + z 4 + z 5 ) , for which the partition function p ( 𝒜 , n ) (i.e. the number of partitions of n with parts in 𝒜 ) is even for all n 6 are determined. An asymptotic estimate to the counting function of this set is also given.

On the powerful part of n 2 + 1

Jan-Christoph Puchta (2003)

Archivum Mathematicum

We show that n 2 + 1 is powerfull for O ( x 2 / 5 + ϵ ) integers n x at most, thus answering a question of P. Ribenboim.

On the r -free values of the polynomial x 2 + y 2 + z 2 + k

Gongrui Chen, Wenxiao Wang (2023)

Czechoslovak Mathematical Journal

Let k be a fixed integer. We study the asymptotic formula of R ( H , r , k ) , which is the number of positive integer solutions 1 x , y , z H such that the polynomial x 2 + y 2 + z 2 + k is r -free. We obtained the asymptotic formula of R ( H , r , k ) for all r 2 . Our result is new even in the case r = 2 . We proved that R ( H , 2 , k ) = c k H 3 + O ( H 9 / 4 + ε ) , where c k > 0 is a constant depending on k . This improves upon the error term O ( H 7 / 3 + ε ) obtained by G.-L. Zhou, Y. Ding (2022).

On the unimodal character of the frequency function of the largest prime factor

Jean-Marie De Koninck, Jason Pierre Sweeney (2001)

Colloquium Mathematicae

The main objective of this paper is to analyze the unimodal character of the frequency function of the largest prime factor. To do that, let P(n) stand for the largest prime factor of n. Then define f(x,p): = #{n ≤ x | P(n) = p}. If f(x,p) is considered as a function of p, for 2 ≤ p ≤ x, the primes in the interval [2,x] belong to three intervals I₁(x) = [2,v(x)], I₂(x) = ]v(x),w(x)[ and I₃(x) = [w(x),x], with v(x) < w(x), such that f(x,p) increases for p ∈ I₁(x), reaches its maximum value in...

Pairs of square-free values of the type n 2 + 1 , n 2 + 2

Stoyan Dimitrov (2021)

Czechoslovak Mathematical Journal

We show that there exist infinitely many consecutive square-free numbers of the form n 2 + 1 , n 2 + 2 . We also establish an asymptotic formula for the number of such square-free pairs when n does not exceed given sufficiently large positive number.

Piatetski-Shapiro sequences

Roger C. Baker, William D. Banks, Jörg Brüdern, Igor E. Shparlinski, Andreas J. Weingartner (2013)

Acta Arithmetica

Currently displaying 121 – 140 of 206