On the number of y-smooth natural numbers ... representable as a sum of two integer squares.
Improving on some results of J.-L. Nicolas [15], the elements of the set , for which the partition function (i.e. the number of partitions of with parts in ) is even for all are determined. An asymptotic estimate to the counting function of this set is also given.
We show that is powerfull for integers at most, thus answering a question of P. Ribenboim.
Let be a fixed integer. We study the asymptotic formula of , which is the number of positive integer solutions such that the polynomial is -free. We obtained the asymptotic formula of for all . Our result is new even in the case . We proved that , where is a constant depending on . This improves upon the error term obtained by G.-L. Zhou, Y. Ding (2022).
The main objective of this paper is to analyze the unimodal character of the frequency function of the largest prime factor. To do that, let P(n) stand for the largest prime factor of n. Then define f(x,p): = #{n ≤ x | P(n) = p}. If f(x,p) is considered as a function of p, for 2 ≤ p ≤ x, the primes in the interval [2,x] belong to three intervals I₁(x) = [2,v(x)], I₂(x) = ]v(x),w(x)[ and I₃(x) = [w(x),x], with v(x) < w(x), such that f(x,p) increases for p ∈ I₁(x), reaches its maximum value in...
We show that there exist infinitely many consecutive square-free numbers of the form , . We also establish an asymptotic formula for the number of such square-free pairs when does not exceed given sufficiently large positive number.